

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.3

1.3.1

1.3.2

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

1.6.9

1.6.10

1.6.11

Table	of	Contents
Cover

Introduction

PyCAC	features	and	non-features

Compilation	and	execution

Publications

Acknowledgements	and	citations

Background

Atomistic	field	theory

A	brief	history	of	CAC

Algorithm

Scheme

Parallelization

Arithmetic	precision

Units

Input

Output

Graphical	user	interface

Installation

PyCAC	project	creation

Existing	project	upload

Results	download

Parametric	study

Command

boundary

box_dir

cal

constrain

convert

debug

deform

dump

dynamics

element

fix

2

1.6.12

1.6.13

1.6.14

1.6.15

1.6.16

1.6.17

1.6.18

1.6.19

1.6.20

1.6.21

1.6.22

1.6.23

1.6.24

1.6.25

1.6.26

1.6.27

1.6.28

1.6.29

1.6.30

1.6.31

1.6.32

1.6.33

1.6.34

1.7

1.7.1

1.7.2

1.7.3

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.8.7

1.9

1.9.1

grain_dir

grain_mat

grain_move

grain_num

group_num

group

lattice

limit

mass

minimize

modify_num

modify

neighbor

potential

refine

restart

run

simulator

subdomain

temperature

unit_num

unit_type

zigzag

Post-processing

OVITO

ParaView

Data	analyzer

Example	problems

Stationary	dislocations

Dislocation	migration

Screw	dislocation	cross-slip

Dislocation	multiplication

Dislocation/obstacle	interactions

Dislocation/stacking	fault	interactions

Dislocation/coherent	twin	boundary	interactions

Miscellanies

element	vs	node

3

1.9.2

1.9.3

1.9.4

1.9.5

1.10

1.10.1

lattice	periodicity	length

processor	rank

shared	elements

EAM	potential

Code	developer	guide

atom	and	atomap

4

PyCAC	User's	Manual
Updated	Mar	07	2019

Copyright	(c)	2017-2018	Georgia	Institute	of	Technology.	All	Rights	Reserved.

PyCAC,	the	concurrent	atomistic-continuum	(CAC)	simulation	environment,	is	a	software	suite	that	allows	users	to	run	CAC
simulations	and	analyze	data.

Currently,	the	CAC	simulator	and	analyzer	are	written	in	Fortran	2008,	with	different	parts	of	the	workflow	glued	by	a	Python
scripting	interface.

A	pdf	version	of	this	manual	can	be	downloaded	here.

This	user's	manual	is	maintained	by	Shuozhi	Xu,	Kevin	Chu,	and	Alex	Selimov.	Kevin	and	Alex	are	current	Ph.D.	students,	while
Shuozhi	is	a	former	Ph.D.	student	and	Postdoctoral	Fellow	with	Prof.	David	L.	McDowell	at	the	Georgia	Institute	of	Technology.

If	you	are	interested	in	the	PyCAC	source	code,	please	email	Prof.	David	L.	McDowell.

Cover

5

https://shuozhixu.cnsi.ucsb.edu
mailto:kchu41@gatech.edu
mailto:aselimov3@gatech.edu
http://www.me.gatech.edu/faculty/mcdowell
http://www.gatech.edu
mailto:david.mcdowell@me.gatech.edu

Introduction
The	concurrent	atomistic-continuum	(CAC)	method	is	a	partitioned-domain	multiscale	modeling	technique	that	is	applicable	to
nano/micro-scale	thermo/mechanical	problems	in	a	wide	range	of	monatomic	and	polyatomic	crystalline	materials.	A	CAC	simulation
model,	in	general,	partitions	the	simulation	cell	into	two	domains:	a	coarse-grained	domain	and	an	atomistic	domain.	Distinct	from
most	concurrent	multiscale	methods	in	the	literature,	CAC	employs	a	unified	atomistic-continuum	integral	formulation	with	elements
that	have	discontinuities	between	them;	also,	the	underlying	interatomic	potential	is	the	only	constitutive	relation	in	the	system.	As
such,	CAC	admits	propagation	of	displacement	discontinuities	(dislocations	and	associated	intrinsic	stacking	faults)	through	a	lattice	in
both	atomistic	and	coarse-grained	domains,	as	shown	in	the	figure	below.

Figure	1.	A	2-D	CAC	simulation	domain	consisting	of	an	atomistic	domain	(right)	and	a	coarse-grained	domain	(left)	(Xu	et	al.).	The
atomistic	domain	is	composed	of	atoms	(black	circles),	which	follow	the	same	governing	equations	in	the	atomistic	simulation.	The
coarse-grained	domain	consists	of	discontinuous	elements	of	varying	size,	each	of	which	contains	a	large	number	of	underlying	atoms
with	the	nodes	(red	circles)	as	the	only	degrees	of	freedom.	Only	the	force/energy	on	integration	points	(green	circles)	and	nodes	are
calculated.	In	(a),	an	edge	dislocation	(red	⊥)	is	located	in	the	atomistic	domain.	Upon	applying	a	shear	stress	on	the	simulation	cell,
the	dislocation	migrates	into	the	coarse-grained	domain	in	(b),	where	the	Burgers	vector	spreads	out	between	discontinuous	elements.

Introduction

6

http://dx.doi.org/10.1016/j.ijplas.2015.05.007

Figure	2.	In	3-D,	elements	have	faces	on	{111}	planes	and	{110}	planes	in	an	FCC	and	a	BCC	lattice,	resepectively.	The	positions	of
atoms	within	each	element	(open	circles)	are	interpolated	from	the	nodal	positions	(red	filled	circles).

In	a	(big)	nutshell,	CAC

describes	certain	lattice	defects	and	their	interactions	using	fully	resolved	atomistics;
preserves	the	net	Burgers	vector	and	associated	long	range	stress	fields	of	curved,	mixed	character	dislocations	in	a	sufficiently
large	continuum	domain	in	a	fully	3D	model;
employs	the	same	governing	equations	and	interatomic	potentials	in	both	domains	to	avoid	the	usage	of	phenomenological
parameters,	essential	remeshing	operations	and	ad	hoc	procedures	for	passing	dislocation	segments	between	the	atomistic	and
coarse-grained	domains.

Introduction

7

PyCAC	features	and	non-features

Features

The	PyCAC	code	can	simulate	monatomic	pure	face-centered	cubic	(FCC)	or	pure	body-centered	cubic	(BCC)	metals	using	the
Lennard-Jones	(LJ)	or	the	embedded-atom	method	(EAM)	potentials	in	a	constant	temperature	field.	In	the	coarse-grained	domain,	3D
trilinear	rhombohedral	elements	are	employed	to	accommodate	dislocations	in	9	out	of	12	sets	of	{111} 110 	slip	systems	in	an	FCC
lattice,	as	well	as	6	out	of	12	sets	of	{110} 111 	slip	systems	in	a	BCC	lattice.

Non-features

While	the	CAC	method	is	applicable	to	thermo/mechanical	problems	in	almost	all	crystalline	materials,	current	version	of	the	PyCAC
code	has	not	yet	been	extended	to	simulate:

dislocations	in	12	sets	of	{112} 111 -type	and	24	sets	of	{123} 111 -type	slip	systems	in	a	BCC	lattice;
crystal	structures	other	than	FCC	and	BCC,	e.g.,	simple	cubic,	diamond	cubic,	hexagonal	close-packed;
interatomic	potentials	other	than	LJ	and	EAM,	e.g.,	Stillinger-Weber	potential,	Tersoff	potential,	or	modified	EAM	(MEAM)
potential;
1D	or	2D	materials	that	require	1D	or	2D	elements,	respectively,	as	well	as	materials	requiring	3D	elements	different	from	the
rhombohedral	ones;
multicomponent,	multi-constituent,	multiphase,	or	polyatomic	crystalline	materials,	e.g.,	alloys,	intermetallics,	composite
materials,	ceramic,	mineral;
materials	in	a	non-constant	temperature	field.

Moreover,	the	adaptive	mesh	refinement	scheme	is	not	implemented	in	the	current	PyCAC	code.

⟨ ⟩

⟨ ⟩

⟨ ⟩ ⟨ ⟩

PyCAC	features	and	non-features

8

http://dx.doi.org/10.1016/j.ijsolstr.2016.03.030

Compilation	and	execution

Please	note	that	these	instructions	are	for	compilation	and	direct	execution	of	the	CAC	simulator.	To	run	CAC	simulations	using	the
GUI,	please	see	the	section	titled:	Graphical	user	interface

MPI

The	PyCAC	code	is	fully	parallelized	with	Message	Passing	Interface	(MPI).	Some	functions	in	MPI-3	standard	are	employed.	It
works	with	Open	MPI	version	2.1,	Intel	MPI	version	5.1,	MPICH	version	3.3,	and	MVAPICH2	version	2.3.

Fortran	compiler

Some	intrinsic	functions	in	Fortran	2008	is	employed	in	the	code,	so	compilers	that	fully	support	Fortran	2008	are	preferred.	For
example,	GNU	Fortran	version	7.0	and	Intel	Fortran	version	17.0	work	with	the	PyCAC	code.

To	compile	the	code,	simply	run	the		install.sh		file	in	the	PyCAC	code	package,	i.e.,

./install.sh

Note	that	the	compilation	process	has	not	been	tested	on	Microsoft	Windows.	On	macOS,	a	message

/opt/local/bin/ranlib:	file:	libcac.a(constant_para_module.o)	has	no	symbols

may	occur.	The	users	are	suggested	to	compile	and	run	the	PyCAC	code	on	Linux,	which	dominates	the	high	performance	computing
systems.

Compilation

Module

In	compilation,	the	first	step	is	to	create	a	static	library		libcac.a		from	the	56	module	files		*_module.f90		in	the		module		directory.
There	are	five	types	of	module	files:

*_comm_module.f90

There	is	only	one		*_comm_module.f90		file:		precision_comm_module.f90	.	It	controls	the	precision	of	the	integer	and	real	numbers.

*_para_module.f90

There	are	25		*_para_module.f90		files.	They	define	single	value	variables	that	may	be	used	globally.

*_array_module.f90

There	are	24		*_array_module.f90		files.	They	define	arrays	that	may	be	used	globally.	With	a	few	exceptions,	the
	*_para_module.f90		and		*_array_module.f90		files	come	in	pairs.

Compilation	and	execution

9

https://www.open-mpi.org
https://software.intel.com/en-us/intel-mpi-library
https://www.mpich.org
http://mvapich.cse.ohio-state.edu
https://gcc.gnu.org/fortran
https://software.intel.com/en-us/fortran-compilers
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/TOP500

*_function_module.f90

There	are	5		*_function_module.f90		files.	They	define	interatomic	potential	formulations,	arithmetic/linear	algebra	calculations,	unit
conversion,	etc.

*_tab_module.f90

There	is	only	one		*_tab_module.f90		file:		eam_tab_module.f90	.	It	contains	algorithms	that	extract	the	EAM	potential-based	values
from	numerical	tables.

Note	that	these	module	files	should	be	compiled	in	this	order	(see	that	the		install.sh		file)	in	creating	the	static	library		libcac.a	.
Otherwise,	an	error	may	occur.

Subroutine

Then,	an	executable,	named		CAC	,	is	compiled	using	one	main	program	(main.f90)	plus	175	subroutines	(*.f90)	in	the		src	
directory	and	linked	with	the	static	library		libcac.a	.

Execution

In	execution,	the	executable		CAC	,	the	input	file		cac.in	,	and	the	potential	files	are	moved	into	the	same	directory.	It	follows	that

mpirun	-np	num_of_proc	./CAC	<	cac.in

where	positive	integer		num_of_proc		is	the	number	of	processors	to	be	used.	As	an	example,	see	the		run.sh		file	in	the	PyCAC	code
package.

Compilation	and	execution

10

Publications

Book	chapters

1.	 Shuozhi	Xu,	Ji	Rigelesaiyin,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Generalized	continua	concepts	in	coarse-
graining	atomistic	simulations,	in	Generalized	Models	and	Non-Classical	Approaches	in	Complex	Materials	2	(ed:	Holm
Altenbach,	Joël	Pouget,	Martine	Rousseau,	Bernard	Collet,	Thomas	Michelitsch),	Switzerland:	Springer	International	Publishing,
2018

2.	 Adrian	Diaz,	David	McDowell,	Youping	Chen.	The	limitations	and	successes	of	concurrent	dynamic	multiscale	modeling
methods	at	the	mesoscale,	in	Generalized	Models	and	Non-Classical	Approaches	in	Complex	Materials	2	(ed:	Holm	Altenbach,
Joël	Pouget,	Martine	Rousseau,	Bernard	Collet,	Thomas	Michelitsch),	Switzerland:	Springer	International	Publishing,	2018

3.	 Shengfeng	Yang,	Youping	Chen.	Concurrent	atomistic-continuum	simulation	of	defects	in	polyatomic	ionic	materials,	in
Multiscale	Materials	Modeling	for	Nanomechanics	(ed:	Christopher	R.	Weinberger,	Garritt	J.	Tucker),	Switzerland:	Springer
International	Publishing,	2016

4.	 Liming	Xiong,	Qian	Deng,	Youping	Chen.	Coarse-grained	atomistic	simulations	of	dislocations	and	fracture	in	metallic	materials,
in	Handbook	of	Micromechanics	and	Nanomechanics	(ed:	Shaofan	Li,	Xin-Lin	Gao),	Singapore:	Pan	Stanford	Publishing,	2013

5.	 Youping	Chen,	James	D.	Lee,	Yajie	Lei,	Liming	Xiong.	A	multiscale	field	theory:	Nano/micro	materials,	in	Multiscaling	in
Molecular	and	Continuum	Mechanics:	Interaction	of	Time	and	Size	from	Macro	to	Nano	(ed:	G.	C.	Sih),	Netherlands:	Springer,
2007

Dissertations	and	theses

1.	 Xiang	Chen.	A	concurrent	atomistic-continuum	study	of	phonon	transport	in	crystalline	materials	with	microstructures,	Ph.D.
Dissertation,	University	of	Florida,	2016

2.	 Shuozhi	Xu.	The	concurrent	atomistic-continuum	method:	Advancements	and	applications	in	plasticity	of	face-centered	cubic
metals,	Ph.D.	Dissertation,	Georgia	Institute	of	Technology,	2016

3.	 Shengfeng	Yang.	A	concurrent	atomistic-continuum	method	for	simulating	defects	in	ionic	materials,	Ph.D.	Dissertation,
University	of	Florida,	2014

4.	 Qian	Deng.	Coarse-graining	atomistic	dynamics	of	fracture	by	finite	element	method:	Formulation,	parallelization	and
applications,	Ph.D.	Dissertation,	University	of	Florida,	2011

5.	 Liming	Xiong.	A	concurrent	atomistic-continuum	methodology	and	its	applications,	Ph.D.	Dissertation,	University	of	Florida,
2011

Peer-reviewed	journal	articles	on	CAC	simulations

(by	acceptance	date)

1.	 Shuozhi	Xu,	Marat	I.	Latypov,	Yanqing	Su,	Concurrent	atomistic-continuum	simulations	of	uniaxial	compression	of	gold
nano/submicropillars,	Philos.	Mag.	Lett.	98	(2018)	173-182

2.	 Shuozhi	Xu,	Modelling	plastic	deformation	of	nano/submicron-sized	tungsten	pillars	under	compression:	A	coarse-grained
atomistic	approach,	Int.	J.	Multiscale	Comput.	Eng.	16	(2018)	367-376

3.	 Shuozhi	Xu,	Thomas	G.	Payne,	Hao	Chen,	Yongchao	Liu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	PyCAC:	The
concurrent	atomistic-continuum	simulation	environment,	J.	Mater.	Res.	33	(2018)	857-871

4.	 Hao	Chen,	Shuozhi	Xu,	Weixuan	Li,	Ji	Rigelesaiyin,	Thanh	Phan,	Liming	Xiong.	A	spatial	decomposition	parallel	algorithm	for	a
concurrent	atomistic-continuum	simulator	and	its	preliminary	applications,	Comput.	Mater.	Sci.	144	(2018)	1-10

5.	 Xiang	Chen,	Adrian	Diaz,	Liming	Xiong,	David	L.	McDowell,	Youping	Chen.	Passing	waves	from	atomistic	to	continuum,	J.

Publications

11

http://dx.doi.org/10.1007/978-3-319-77504-3_12
http://dx.doi.org/10.1007/978-3-319-77504-3_3
http://dx.doi.org/10.1007/978-3-319-33480-6_8
http://www.panstanford.com/books/9789814411233.html
http://dx.doi.org/10.1007/978-1-4020-5062-6_3
http://ufdc.ufl.edu/UFE0050325/00001
https://smartech.gatech.edu/handle/1853/56314
http://ufdc.ufl.edu/UFE0047355/00001
http://ufdc.ufl.edu/UFE0043632/00001
http://ufdc.ufl.edu/UFE0042371/00001
http://dx.doi.org/10.1080/09500839.2018.1515506
http://dx.doi.org/10.1615/IntJMultCompEng.2018026027
http://dx.doi.org/10.1557/jmr.2018.8
http://dx.doi.org/10.1016/j.commatsci.2017.11.051
http://dx.doi.org/10.1016/j.jcp.2017.10.038

Comput.	Phys.	354	(2018)	393-402
6.	 Xiang	Chen,	Weixuan	Li,	Adrian	Diaz,	Yang	Li,	Youping	Chen,	David	L.	McDowell.	Recent	progress	in	the	concurrent	atomistic-

continuum	method	and	its	application	in	phonon	transport,	MRS	Comm.	7	(2017)	785-797
7.	 Xiang	Chen,	Weixuan	Li,	Liming	Xiong,	Yang	Li,	Shengfeng	Yang,	Zexi	Zheng,	David	L.	McDowell,	Youping	Chen.	Ballistic-

diffusive	phonon	heat	transport	across	grain	boundaries,	Acta	Mater.	136	(2017)	355-365
8.	 Xiang	Chen,	Liming	Xiong,	David	L.	McDowell,	Youping	Chen.	Effects	of	phonons	on	mobility	of	dislocations	and	dislocation

arrays,	Scr.	Mater.	137	(2017)	22-26
9.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Validation	of	the	concurrent	atomistic-continuum	method	on

screw	dislocation/stacking	fault	interactions,	Crystals	7	(2017)	120
10.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Comparing	EAM	potentials	to	model	slip	transfer	of	sequential

mixed	character	dislocations	across	two	symmetric	tilt	grain	boundaries	in	Ni,	JOM	69	(2017)	814-821
11.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Shear	stress-	and	line	length-dependent	screw	dislocation	cross-

slip	in	FCC	Ni,	Acta	Mater.	122	(2017)	412-419
12.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	An	analysis	of	key	characteristics	of	the	Frank-Read	source

process	in	FCC	metals,	J.	Mech.	Phys.	Solids	96	(2016)	460-476
13.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Edge	dislocations	bowing	out	from	a	row	of	collinear	obstacles

in	Al,	Scr.	Mater.	123	(2016)	135-139
14.	 Shuozhi	Xu,	Liming	Xiong,	Qian	Deng,	David	L.	McDowell.	Mesh	refinement	schemes	for	the	concurrent	atomistic-continuum

method,	Int.	J.	Solids	Struct.	90	(2016)	144-152
15.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Sequential	slip	transfer	of	mixed	character	dislocations	across	

Σ3	coherent	twin	boundary	in	FCC	metals:	A	concurrent	atomistic-continuum	study,	npj	Comput.	Mater.	2	(2016)	15016
16.	 Liming	Xiong,	Ji	Rigelesaiyin,	Xiang	Chen,	Shuozhi	Xu,	David	L.	McDowell,	Youping	Chen.	Coarse-grained	elastodynamics	of

fast	moving	dislocations,	Acta	Mater.	104	(2016)	143-155
17.	 Shengfeng	Yang,	Ning	Zhang,	Youping	Chen.	Concurrent	atomistic-continuum	simulation	of	polycrystalline	strontium	titanate,

Philos.	Mag.	95	(2015)	2697-2716
18.	 Shuozhi	Xu,	Rui	Che,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	A	quasistatic	implementation	of	the	concurrent

atomistic-continuum	method	for	FCC	crystals,	Int.	J.	Plast.	72	(2015)	91–126
19.	 Shengfeng	Yang,	Youping	Chen.	Concurrent	atomistic	and	continuum	simulation	of	bi-crystal	strontium	titanate	with	tilt	grain

boundary,	Proc.	R.	Soc.	A	471	(2015)	20140758
20.	 Liming	Xiong,	Shuozhi	Xu,	David	L.	McDowell,	Youping	Chen.	Concurrent	atomistic-continuum	simulations	of	dislocation-void

interactions	in	fcc	crystals,	Int.	J.	Plast.	65	(2015)	33-42
21.	 Liming	Xiong,	Xiang	Chen,	Ning	Zhang,	David	L.	McDowell,	Youping	Chen.	Prediction	of	phonon	properties	of	1D	polyatomic

systems	using	concurrent	atomistic-continuum	simulation,	Arch.	Appl.	Mech.	84	(2014)	1665-1675
22.	 Liming	Xiong,	David	L.	McDowell,	Youping	Chen.	Sub-THz	Phonon	drag	on	dislocations	by	coarse-grained	atomistic

simulations,	Int.	J.	Plast.	55	(2014)	268-278
23.	 Qian	Deng,	Youping	Chen,	A	coarse-grained	atomistic	method	for	3D	dynamic	fracture	simulation,	Int.	J.	Multiscale	Comput.

Eng.	11	(2013)	227-237
24.	 Shengfeng	Yang,	Liming	Xiong,	Qian	Deng,	Youping	Chen.	Concurrent	atomistic	and	continuum	simulation	of	strontium	titanate,

Acta	Mater.	61	(2013)	89–102
25.	 Liming	Xiong,	David	L.	McDowell,	Youping	Chen.	Nucleation	and	growth	of	dislocation	loops	in	Cu,	Al	and	Si	by	a	concurrent

atomistic-continuum	method,	Scr.	Mater.	67	(2012)	633–636
26.	 Liming	Xiong,	Qian	Deng,	Garritt	Tucker,	David	L.	McDowell,	Youping	Chen.	Coarse-grained	atomistic	simulations	of

dislocations	in	Al,	Ni	and	Cu	crystals,	Int.	J.	Plast.	38	(2012)	86–101
27.	 Liming	Xiong,	Youping	Chen.	Coarse-grained	atomistic	modeling	and	simulation	of	inelastic	material	behavior,	Acta	Mech.

Solida	Sin.	25	(2012)	244-261
28.	 Liming	Xiong,	Qian	Deng,	Garritt	Tucker,	David	L.	McDowell,	Youping	Chen.	A	concurrent	scheme	for	passing	dislocations

from	atomistic	to	continuum	domains,	Acta	Mater.	60	(2012)	899-913

Publications

12

http://dx.doi.org/10.1557/mrc.2017.116
http://dx.doi.org/10.1016/j.actamat.2017.06.054
http://dx.doi.org/10.1016/j.scriptamat.2017.04.033
http://dx.doi.org/10.3390/cryst7050120
http://dx.doi.org/10.1007/s11837-017-2302-1
http://dx.doi.org/10.1016/j.actamat.2016.10.005
http://dx.doi.org/10.1016/j.jmps.2016.08.002
http://dx.doi.org/10.1016/j.scriptamat.2016.06.018
http://dx.doi.org/10.1016/j.ijsolstr.2016.03.030
http://dx.doi.org/10.1038/npjcompumats.2015.16
http://dx.doi.org/10.1016/j.actamat.2015.11.037
http://dx.doi.org/10.1080/14786435.2015.1076178
http://dx.doi.org/10.1016/j.ijplas.2015.05.007
http://dx.doi.org/10.1098/rspa.2014.0758
http://dx.doi.org/10.1016/j.ijplas.2014.08.002
http://dx.doi.org/10.1007/s00419-014-0880-8
http://dx.doi.org/10.1016/j.ijplas.2013.11.004
http://dx.doi.org/10.1615/IntJMultCompEng.2013005442
http://dx.doi.org/10.1016/j.actamat.2012.09.032
http://dx.doi.org/10.1016/j.scriptamat.2012.07.026
http://dx.doi.org/10.1016/j.ijplas.2012.05.002
http://dx.doi.org/10.1016/S0894-9166(12)60023-8
http://dx.doi.org/10.1016/j.actamat.2011.11.002

29.	 Liming	Xiong,	Garritt	Tucker,	David	L.	McDowell,	Youping	Chen.	Coarse-grained	atomistic	simulation	of	dislocations,	J.	Mech.
Phys.	Solids	59	(2011)	160-177

30.	 Qian	Deng,	Liming	Xiong,	Youping	Chen.	Coarse-graining	atomistic	dynamics	of	brittle	fracture	by	finite	element	method,	Int.	J.
Plast.	26	(2010)	1402-1414

Peer-reviewed	journal	articles	on	the	theoretical	foundations	of	CAC

(by	acceptance	date):

1.	 Youping	Chen.	The	origin	of	the	distinction	between	microscopic	formulas	for	stress	and	Cauchy	stress,	Europhys.	Lett.	116
(2016)	34003

2.	 Youping	Chen	and	Adrian	Diaz.	Local	momentum	and	heat	fluxes	in	transient	transport	processes	and	inhomogeneous	systems,
Phys.	Rev.	E	94	(2016)	053309

3.	 Youping	Chen,	Jonathan	Zimmerman,	Anton	Krivtsov,	David	L.	McDowell.	Assessment	of	atomistic	coarse-graining	methods,
Int.	J.	Eng.	Sci.	49	(2011)	1337-1349

4.	 Youping	Chen.	Reformulation	of	microscopic	balance	equations	for	multiscale	materials	modeling,	J.	Chem.	Phys.	130	(2009)
134706

5.	 Youping	Chen,	James	Lee,	Liming	Xiong.	A	generalized	continuum	theory	and	its	relation	to	micromorphic	theory,	J.	Eng.	Mech.
135	(2009)	149-155

6.	 Youping	Chen.	Local	stress	and	heat	flux	in	atomistic	systems	involving	three-body	forces,	J.	Chem.	Phys.	124	(2006)	054113
7.	 Youping	Chen,	James	Lee.	Conservation	laws	at	nano/micro	scales,	J.	Mech.	Mater.	Struct.	1	(2006)	681-704
8.	 Youping	Chen,	James	Lee,	Liming	Xiong.	Stresses	and	strains	at	nano/micro	scales,	J.	Mech.	Mater.	Struct.	1	(2006)	705-723
9.	 Youping	Chen,	James	Lee.	Atomistic	formulation	of	a	multiscale	theory	for	nano/micro	physics,	Philos.	Mag.	85	(2005)	4095-

4126
10.	 Youpig	Chen,	James	D.	Lee,	Azim	Eskandarian.	Micropolar	theory	and	its	applications	to	mesoscopic	and	microscopic	problems,

Comput.	Modeling	Eng.	Sci.	5	(2004)	35-43
11.	 Youpig	Chen,	James	D.	Lee,	Azim	Eskandarian,	Atomistic	counterpart	of	micromorphic	theory,	Acta	Mech.	161	(2003)	81-102

Publications

13

http://dx.doi.org/10.1016/j.jmps.2010.11.005
http://dx.doi.org/10.1016/j.ijplas.2010.04.007
http://dx.doi.org/10.1209/0295-5075/116/34003
http://dx.doi.org/10.1103/PhysRevE.94.053309
http://dx.doi.org/10.1016/j.ijengsci.2011.03.018
http://dx.doi.org/10.1063/1.3103887
http://dx.doi.org/10.1061/(ASCE)0733-9399(2009)135:3(149)
http://dx.doi.org/10.1063/1.2166387
http://dx.doi.org/10.2140/jomms.2006.1.681
http://dx.doi.org/10.2140/jomms.2006.1.705
http://dx.doi.org/10.1080/14786430500362595
http://dx.doi.org/10.3970/cmes.2004.005.035
http://dx.doi.org/10.1007/s00707-002-0981-2

Acknowledgements	and	citations

The	CAC	simulator	and	analyser	were	written	in	Fortran	by	Shuozhi	Xu;	the	Python	scripting	interface	was	written	by	Alex	Selimov
and	Kevin	Chu;	the	code	in	its	present	form	is	a	culmination	of	developments	over	the	last	decades.

The	PyCAC	code	development	was	sponsored	by

National	Science	Foundation
Georgia	Institute	of	Technology,	CMMI-1232878
University	of	Florida,	CMMI-1233113
Iowa	State	University,	CMMI-1536925

Department	of	Energy,	Office	of	Basic	Energy	Sciences
University	of	Florida,	DE-SC0006539

Institute	for	Materials,	Georgia	Institute	of	Technology

If	you	use	PyCAC	results	in	your	published	work,	please	cite	these	papers

Shuozhi	Xu,	Thomas	G.	Payne,	Hao	Chen,	Yongchao	Liu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	PyCAC:	The
concurrent	atomistic-continuum	simulation	environment,	J.	Mater.	Res.	33	(2018)	857-871
Shuozhi	Xu,	Rui	Che,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	A	quasistatic	implementation	of	the	concurrent
atomistic-continuum	method	for	FCC	crystals,	Int.	J.	Plast.	72	(2015)	91–126
Liming	Xiong,	Garritt	Tucker,	David	L.	McDowell,	Youping	Chen.	Coarse-grained	atomistic	simulation	of	dislocations,	J.	Mech.
Phys.	Solids	59	(2011)	160-177
Youping	Chen.	Reformulation	of	microscopic	balance	equations	for	multiscale	materials	modeling,	J.	Chem.	Phys.	130	(2009)
134706

as	well	as	the	website	www.pycac.org,	i.e.,

@article{xu_pycac_2018,

									title	=	{Py{CAC}:	{The}	concurrent	atomistic-continuum	simulation	environment},

									volume	=	{33},

									issn	=	{0884-2914,	2044-5326},

									doi	=	{10.1557/jmr.2018.8},

									abstract	=	{We	present	a	...},

									journal	=	{J.	Mater.	Res.},

									author	=	{Xu,	Shuozhi	and	Payne,	Thomas	G.	and	Chen,	Hao	and	Liu,	Yongchao	and	Xiong,	Liming	and	Chen,	Youp

ing	and	McDowell,	David	L.},

									month	=	apr,

									year	=	{2018},

									pages	=	{857--871}}

@article{xu_quasistatic_2015,

									title	=	{A	quasistatic	implementation	of	the	concurrent	atomistic-continuum	method	for	{FCC}	crystals},

									volume	=	{72},

									issn	=	{0749-6419},

									doi	=	{10.1016/j.ijplas.2015.05.007},

									abstract	=	{In	recent	years,	...},

									journal	=	{Int.	J.	Plast.},

									author	=	{Xu,	Shuozhi	and	Che,	Rui	and	Xiong,	Liming	and	Chen,	Youping	and	McDowell,	David	L.},

									month	=	sep,

									year	=	{2015},

									pages	=	{91--126}}

@article{xiong_coarse-grained_2011,

										title	=	{Coarse-grained	atomistic	simulation	of	dislocations},

Acknowledgements	and	citations

14

https://shuozhixu.cnsi.ucsb.edu
http://www.mse.gatech.edu/people/alex-selimov
http://www.mse.gatech.edu/people/kevin-chu
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1232878
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1233113
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1536925
http://www.materials.gatech.edu/
http://dx.doi.org/10.1557/jmr.2018.8
http://dx.doi.org/10.1016/j.ijplas.2015.05.007
http://dx.doi.org/10.1016/j.jmps.2010.11.005
http://dx.doi.org/10.1063/1.3103887
http://www.pycac.org

										volume	=	{59},

										issn	=	{0022-5096},

										doi	=	{10.1016/j.jmps.2010.11.005},

										abstract	=	{This	paper	presents	...},

										number	=	{2},

										journal	=	{J.	Mech.	Phys.	Solids},

										author	=	{Xiong,	Liming	and	Tucker,	Garritt	and	McDowell,	David	L.	and	Chen,	Youping},

										month	=	feb,

										year	=	{2011},

										pages	=	{160--177}}

@article{chen_reformulation_2009,

									title	=	{Reformulation	of	microscopic	balance	equations	for	multiscale	materials	modeling},

									volume	=	{130},

									issn	=	{00219606},

									doi	=	{10.1063/1.3103887},

									abstract	=	{In	this	paper	...},

									number	=	{13},

									journal	=	{J.	Chem.	Phys.},

									author	=	{Chen,	Youping},

									month	=	apr,

									year	=	{2009},

									pages	=	{134706}}

@misc{xu_pycac-manual_2018,

						title	=	{Py{CAC}	{User}'s	{Manual}},

						howpublished	=	{\url{http://www.pycac.org/}},

						author	=	{Xu,	Shuozhi},

						month	=	aug,

						year	=	{2017},

						note	=	{Accessed:	\today}}

Acknowledgements	and	citations

15

Background
This	chapter,	written	by	Prof.	Youping	Chen,	presents	the	atomistic	field	theory	and	a	brief	history	of	CAC.

Background

16

http://web.mae.ufl.edu/chenlab

Atomistic	field	theory

The	theoretical	foundation	of	the	CAC	method	is	the	atomistic	field	theory	(AFT)	[1,2],	which	is	an	extension	of	the	Irving	Kirkwood
(IK)'s	non-equilibrium	statistical	mechanical	formulation	of	"the	hydrodynamics	equations	for	a	single	component,	single	phase
system"	[3]	to	a	two-level	structural	description	of	crystalline	materials.	It	employs	the	two-level	structural	description	of	all	crystals	in
solid	state	physics,	i.e.,	the	well	known	equation	of	"crystal	structure	=	lattice	+	basis"	[4].	As	a	result	of	the	bottom-up	atomistic
formulation,	all	the	essential	atomistic	information	of	the	material,	including	the	crystal	structure	and	the	interaction	between	atoms,
are	built	in	the	formulation.	A	schematic	of	micromorphic	theory	and	AFT	is	given	below.

Macro-	and	micro-motions	of	a	material	particle	P	in	(a)	micromorphic	theory	and	(b)	AFT.	Left	in	(a)	and	(b)	is	the	reference	state	at
time	0	while	right	is	the	deformation	state	at	time	t.	X	and	x	are	the	positions	of	the	mass	center	of	the	unit	cell,	Ξ	and	ξ	are	internal

positions,	Y	and	y 	are	positions	of	atom	α	with	respect	to	X	and	x,	respectively,	N 	is	the	number	of	atoms	in	a	unit	cell.

The	governing	equations	for	conservative	systems

The	result	is	a	concurrent	atomistic-continuum	representation	of	balance	laws	for	both	atomistic	and	continuum	coarse-grained
domains	in	the	following	form	[1,2]:

+ ρ (∇ ⋅ v +∇ ⋅ Δv) = 0

ρ (v +Δv) = ∇ ⋅ t +∇ ⋅ τ + f

ρ = ∇ ⋅ q +∇ ⋅ j + t : ∇ (v +Δv) + τ : ∇ (v +Δv)

where	x	is	the	physical	space	coordinate;	y (α = 1, 2,… ,N 	with	N 	being	the	total	number	of	atoms	in	a	unit	cell)	are	the	internal

variables	describing	the	position	of	atom	α	relative	to	the	mass	center	of	the	lattice	cell	located	at	x;	ρ ,	ρ (v +Δv),	and	ρ e 	are

the	local	densities	of	mass,	linear	momentum	and	total	energy,	respectively;	v +Δv 	is	the	atomic-level	velocity	and	v	is	the	velocity

field;	f 	is	the	external	force	field;	t 	and	q 	are	the	stress	and	heat	flux	due	to	the	homogeneous	deformation	of	lattice,	respectively;

τ 	and	j 	are	the	stress	and	heat	flux	due	to	the	reorganizations	of	atoms	within	the	lattice	cells,	respectively.

For	monatomic	crystals,	which	PyCAC	can	simulate,	y = 0	and	N = 1;	the	governing	equations	reduce	to

+ ρ∇ ⋅ v = 0

ρ = ∇ ⋅ t+ f

ρ = ∇ ⋅ q+ t : ∇ v.

α
a

dt
dρα α

x yα
α

α
dt
d α

x
α

yα
α

ext
α

α
dt
deα

x
α

yα
α α

x
α α

yα
α

α
a a

α α α α α

α

ext
α α α

α α

α
a

dt
dρ

x

dt
dv

x ext

dt
de

x x

Atomistic	field	theory

17

For	conservative	systems,	i.e.,	a	system	in	the	absence	of	an	internal	source	that	generates	or	dissipates	energy,	the	AFT	energy
equation	is	equivalent	to	the	AFT	linear	momentum	equation.	Because	of	its	current	features,	only	the	first	two	governing	equations
are	explicitly	implemented	into	PyCAC.	Employing	the	classical	definition	of	kinetic	temperature,	which	is	proportional	to	the	kinetic

part	of	the	atomistic	stress,	the	linear	momentum	equations	can	be	expressed	in	a	form	that	involves	the	internal	force	density	f 	and

temperature	T 	[5-7],

ρ + ∇ T = f + f , α = 1, 2,… ,N

where	u 	is	the	displacement	of	the	αth	atom	at	point	x;	the	superposed	dots	denote	the	material	time	derivative;	ΔV 	is	the	volume	of

the	finite-sized	material	particle	(the	primitive	unit	cell	for	crystalline	materials)	at	x;	k 	is	the	Boltzmann	constant;	

γ = ρ / ρ ,	and	f 	is	the	internal	force	density	and	is	a	nonlinear	nonlocal	function	of	relative	atomic	displacements.

For	systems	with	a	constant	temperature	field	or	a	constant	temperature	gradient,	the	temperature	term	has	the	effect	of	a	surface
traction	on	the	boundary	or	a	body	force	in	the	interior	of	the	material	[6].	Denoting	the	temperature	term	in	the	above	equation	as	

f (x)	and	the	finite	element	shape	function	as	Φ (x),	the	Galerkin	weak	form	of	the	above	equation	can	be	written	as

Φ (x)(ρ (x) + f (x) − f (x) − f (x))dx = 0

where	Ω(x)	is	the	simulation	domain;	the	integrals	can	be	evaluated	using	numerical	integration	methods	such	as	Gaussian	quadrature,
leading	to	a	set	of	discretized	governing	equations	with	the	finite	element	nodal	displacements	as	the	unknowns	to	be	solved.	Note	that

in	PyCAC,	the	f (x)	term	has	not	yet	been	implemented	as	(i)	the	effect	on	mechanical	properties	in	a	constant	temperature	field	is

small	and	(ii)	work	is	underway	to	compare	different	descriptions	of	temperature	in	the	coarse-grained	domain.

The	accuracy,	efficiency,	and	stability	of	the	CAC	simulator	are	then	determined	by	the	two	approximations:	the	shape	function	and	the
numerical	integration.	Simulation	results	can	be	displayed	in	terms	of	finite	elements,	which	can	also	be	mapped	back	to	atomic
positions	and	be	used	to	plot	the	atomic	trajectories.	With	the	only	constitutive	relation	being	the	nonlocal	atomic	force-displacement
relation,	continuity	between	elements	in	the	usual	finite	element	method	is	not	required.	Consequently,	nucleation	and	propagation	of
dislocations	and/or	cracks	can	be	simulated	via	sliding	and	separation	between	finite	elements.

AFT	and	the	equilibrium	ensembles

The	local	densities	defined	in	the	Irving	and	Kirkwood	formulations	are	ensemble	averaged	point	functions.	The	ensemble	averaging
was	described	by	Irving	and	Kirkwood	as	"repeating	the	observations	many	times"	[3].	In	the	early	version	of	the	AFT	formulation	[1],
the	local	densities	were	also	defined	as	ensemble	averages	and	hence	the	governing	equations	were	written	in	terms	of	ensemble-
averaged	local	densities.	In	the	later	version	of	the	AFT	formulation	[2],	the	local	densities	are	instantaneous	quantities,	according	to
argument	by	Evan	and	Morris	[8],	who	wrote	"…	the	reason	for	considering	instantaneous	expressions	is	two-fold.	The	fluxes	are
based	upon	conservation	laws	and	these	laws	are	valid	instantaneously	for	every	member	of	the	ensemble.	They	do	not	require
ensemble	averaging	to	be	true.	Secondly,	most	computer	simulation	involves	calculating	system	properties	from	a	single	system
trajectory.	Ensemble	averaging	is	almost	never	used	because	it	is	relatively	expensive	in	computer	time".

Note	that	the	AFT	local	densities	and	governing	equations	were	derived	as	an	extension	of	the	Irving	and	Kirkwood's	formulation	of
the	equations	of	hydrodynamics.	Consequently,	they	differ	from	other	statistical	mechanical	formulations	that	follow	the	Gibbs'
equilibrium	statistical	theory	of	ensembles.	Popular	equilibrium	ensembles	include	(i)	the	microcanonical	ensemble,	which	describes	a
systems	isolated	from	its	surroundings	and	governed	by	Hamilton's	equations	of	motion	(NVE),	(ii)	the	canonical	ensemble,	which
describe	a	system	in	constant	contact	with	a	heat	bath	of	constant	temperature	(NVT),	and	(iii)	the	isothermal-isobaric	ensembles,
which	describes	systems	in	contact	with	a	thermostat	at	temperature	T 	and	a	barostat	at	pressure	P 	(NPT)	[9].	These	ensembles,
known	as	equilibrium	ensembles	and	allowing	a	wide	variety	of	thermodynamic	and	structural	properties	of	systems	to	be	computed,

int
α

α üα ΔV
γ kα

B x int
α

ext
α

a

α

B

α α ∑α=1
Na α

int
α

T
α

ξ

∫Ω(x) ξ
α üα T

α
int
α

ext
α

T
α

Atomistic	field	theory

18

can	be	realized	in	dynamic	CAC,	in	which	a	finite	temperature	can	be	achieved	via	lattice	dynamic-based	shape	functions	[10].
Alternatively,	in	the	current	code,	a	Langevin	thermostat	is	realized	while	a	constant	pressure/stress	is	maintained	via	a	Berendsen
barostat.

References

1.	 Youping	Chen,	James	Lee.	Atomistic	formulation	of	a	multiscale	theory	for	nano/micro	physics,	Philos.	Mag.	85	(2005)	4095-
4126

2.	 Youping	Chen.	Reformulation	of	microscopic	balance	equations	for	multiscale	materials	modeling,	J.	Chem.	Phys.	130	(2009)
134706

3.	 J.H.	Irving,	Jhon	G.	Kirkwood.	The	statistical	mechanical	theory	of	transport	processes.	IV.	The	equations	of	hydrodynamics,	J.
Chem.	Phys.	18	(1950)	817-829

4.	 Charles	Kittel.	Introduction	to	Solid	State	Physics,	1956:	John	Wiley	&	Sons,	Inc
5.	 Qian	Deng,	Coarse-graining	atomistic	dynamics	of	fracture	by	finite	element	method:	Formulation,	parallelization	and

applications,	Ph.D.	Dissertation,	University	of	Florida,	2011
6.	 Liming	Xiong,	Youping	Chen.	Coarse-grained	simulations	of	single-crystal	silicon.	Modelling	Simul.	Mater.	Sci.	Eng.	17	(2009)

035002
7.	 Liming	Xiong,	Youping	Chen,	James	D.	Lee.	Atomistic	simulation	of	mechanical	properties	of	diamond	and	silicon	carbide	by	a

field	theory,	Modelling	Simul.	Mater.	Sci.	Eng.	15	(2007)	535-551
8.	 Denis	J.	Evans,	Gary	P.	Morriss.	Statistical	Mechanics	of	Nonequilibrium	Liquids,	2008:	Cambridge	University	Press
9.	 Mark	E.	Tuckerman.	Statistical	Mechanics:	Theory	and	Molecular	Simulation,	2010:	Oxford	University	Press
10.	 Xiang	Chen,	Adrian	Diaz,	Liming	Xiong,	David	L.	McDowell,	Youping	Chen.	Passing	waves	from	atomistic	to	continuum,	J.

Comput.	Phys.	354	(2018)	393-402

Atomistic	field	theory

19

http://dx.doi.org/10.1080/14786430500362595
http://dx.doi.org/10.1063/1.3103887
http://dx.doi.org/10.1063/1.1747782
http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP000803.html
http://ufdc.ufl.edu/UFE0043632/00001
http://dx.doi.org/10.1088/0965-0393/17/3/035002
http://dx.doi.org/10.1088/0965-0393/15/5/011
http://www.sciencedirect.com/science/book/9780122440908
https://www.amazon.com/Statistical-Mechanics-Molecular-Simulation-Graduate/dp/0198525265
http://dx.doi.org/10.1016/j.jcp.2017.10.038

A	brief	history	of	CAC	(2003-2017)

The	CAC	method	is	based	on	a	concurrent	atomistic-continuum	formulation	of	balance	laws	[1,2]	that	are	implemented	using	a	finite
element	(FE)	strategy,	with	the	interatomic	potential	as	the	only	constitutive	relation.	The	formulation	of	the	CAC	balance	equations,
originally	referred	to	as	an	atomic	micromorphic	theory	or	atomistic	field	theory	(AFT)	by	Youping	Chen	and	James	D.	Lee	[1,3-8],	is
an	extension	of	the	Irving	Kirkwood's	formulation	of	"the	hydrodynamics	equations	for	a	single	component,	single	phase	system"	[9]
to	a	two-level	structural	description	of	crystalline	materials.	The	CAC	formulation	differs	from	that	of	classical	continuum	mechanics
in	that	it	employs	a	two-level	structural	description	of	materials.	It	is	also	distinct	from	the	well-established	theories	of	generalized
continuum	mechanics	such	as	the	Cosserat	theory	[10],	micropolar	theory	[11,12],	and	micromorphic	theory	[13,14]	in	that	the	sub-
level	structural	description	is	not	continuous	but	discrete.

The	first	version	of	the	CAC	numerical	tool	was	developed	by	Liming	Xiong	(Ph.D.	2011)	and	Qian	Deng	(Ph.D.	2011).	The
reformulated	balance	equations	were	numerically	implemented	using	FE	method	with	trilinear	FE	shape	functions	and	nodal
integration,	and	the	simulation	tool	was	demonstrated	to	be	able	to	capture	the	phenomenon	of	phase	transition	in	Si	[15]	and	the
dynamic	processes	of	fracture,	including	crack	initiation,	propagation	and	branching	(Fig.	1)	[16,17].

Figure	1.	Time	sequence	of	CAC	simulations	of	a	brittle	material	(2.24	μm	by	1.4	μm)	showing	(a)	stress	waves	emitting	from	a
propagating	crack;	(b)	and	(c)	crack	branching	as	a	result	of	the	interactions	between	waves	propagating	from	the	crack	tip	and	those
reflected	from	the	specimen	boundaries	[17].

The	form	and	capabilities	of	the	CAC	method	were	extended	substantially	as	a	direct	result	of	collaborative	efforts	between	University
of	Florida	and	Georgia	Tech	in	modeling	and	simulations	of	the	dynamics	of	dislocations:	elements	that	have	discontinuities	between
them	were	employed,	and	the	Gaussian	quadrature	was	used	for	integration	in	the	coarse-grained	domain.	Nucleation	and	propagation
of	dislocations	in	the	coarse-grained	domain	[18,19],	passing	dislocations	from	the	atomistic	domain	to	the	coarse-grained	domain
[20],	the	growth	of	dislocation	loops	in	Cu,	Al	and	Si	(Fig.	2(a))	[21],	fast	moving	dislocations	(Fig.	2(b))	[22],	and	other	progresses
[23-26],	have	been	successfully	simulated	without	special	numerical	treatment	or	supplemental	constitutive	relations.	The	name
"CAC"	for	the	methodology	was	coined	by	David	L.	McDowell	in	2010.

A	brief	history	of	CAC

20

http://web.mae.ufl.edu/chenlab
https://www.seas.gwu.edu/james-d-lee
https://www.aere.iastate.edu/lmxiong/
http://ufdc.ufl.edu/UFE0042371/00001
http://gr.xjtu.edu.cn/web/tonydqian
http://ufdc.ufl.edu/UFE0043632/00001
http://www.ufl.edu/
http://www.gatech.edu/
http://www.me.gatech.edu/faculty/mcdowell

Figure	2.	(a)	CAC	simulation	results	of	the	nucleation	and	growth	of	dislocation	loops	in	Cu,	Al,	Si	[21].	(b)	Time	sequences	of
dislocation	motions	in	MD	and	fully	coarse-grained	CAC	simulations	[22].

The	CAC	code	was	rewritten	using	Fortran	90	by	Shengfeng	Yang	(Ph.D.	2014)	for	multiscale	simulation	of	polycrystalline	ionic
materials.	This	is	the	second-generation	of	the	CAC	code.	It	employs	the	Wolf	method	to	calculate	the	long-range	Columbic	force	and
a	special	type	of	element	(i.e.,	an	incomplete	element)	to	model	regions	with	defects	such	as	grain	boundaries	(GBs)	in	polyatomic
materials.	This	version	of	the	CAC	code	enables	multiple	meshing	resolutions	and	simulation	of	two	or	more	materials	(e.g.,	Si	and
Ge),	with	multiple	types	of	interatomic	potentials,	including	the	Buckingham	and	the	Stillinger-Weber	potentials.	The	CAC	code	was

demonstrated	to	reproduce	the	equilibrium	structures	and	energies	of	GBs	in	SrTiO ,	in	good	agreement	with	those	obtained	from

existing	experiments	and	density	functional	theory	calculations.	The	code	has	been	used	to	study	the	dynamic	processes	of	crack

initiation	as	well	as	the	evolution	of	dislocation	in	single	crystalline	[27],	bicrytalline	[28],	and	polycrystalline	SrTiO 	(Fig.	3)	[29,30].

Figure	3.	(a)	A	CAC	model	of	polycrystalline	SrTiO 	(2D	view)	in	which	the	GBs	are	modeled	with	atomic	resolution	and	the	grains

with	coarse-scale	finite	elements;	(b)	Central	symmetry	parameter	plot	of	the	deformed	model	showing	the	nucleation	and	propagation
of	many	dislocations	and	their	interactions	with	the	GBs;	The	comparison	between	(c)	CAC	and	(d)	MD	simulation	results	is	shown	at
strain	8.7%	[30].

3

3

3

A	brief	history	of	CAC

21

https://sites.google.com/site/yangshengfeng/
http://ufdc.ufl.edu/UFE0047355/00001

The	CAC	code	was	also	rewritten	by	Shuozhi	Xu	(Ph.D.	2016)	using	Fortran	2008.	The	code	was	optimized	and	the	efficiency	was
significantly	improved.	The	code	includes	the	quasistatic	version	of	CAC	to	carry	out	quasistatic	simulations	so	as	to	obtain	energy
minimized	atomic	and	nodal	structures,	in	addition	to	dynamic	simulations.	Equipped	with	the	Python	scripting	interface,	this	version
of	code,	termed	PyCAC,	has	been	well	tested	for	ductile	fracture	[31],	quasistatic	dislocation	migration	[32],	screw	dislocation	cross-
slip	[33],	edge	dislocations	bowing	out	from	obstacles	[34],	dislocation	multiplication	from	Frank-Read	sources	[35],
dislocation/stacking	fault	interactions	[36],	and	dislocation/GB	interactions	(Fig.	4)	[37,38].

Figure	4.	Snapshots	of	dislocation	pile-up	with	dominant	leading	screw	character	impinging	against	a	Σ3{111}	coherent	twin	boundary
(CTB)	[38].	In	(a),	five	incoming	dislocations	approach	the	CTB	subject	to	an	applied	shear	stress.	In	(b),	the	leading	dislocation	is
constricted	at	the	CTB,	where	two	Shockley	partial	dislocations	are	recombined	into	a	full	dislocation.	In	(c),	with	certain	interatomic
potentials,	the	dislocation	effectively	cross-slips	into	the	outgoing	twinned	grain	via	redissociation	into	two	partials.	In	(d),	with
different	potentials,	the	redissociated	dislocation	is	absorbed	by	the	CTB,	with	two	partials	gliding	on	the	twin	plane	in	opposite
directions.

Based	on	the	Fortran	90	code,	Xiang	Chen	(Ph.D.	2016)	extended	the	CAC	method	for	space-	and	time-resolved	simulation	of	the
transient	processes	of	the	propagation	of	heat	pulses	in	single	crystals	and	across	GBs	[39]	as	well	as	the	interactions	between	heat
pulses	and	moving	dislocations	(Fig.	5)	[40].	A	phonon	representation	of	the	heat	pulses,	termed	a	coherent	phonon	pulse	model	[41],
was	created	to	mimic	the	coherent	lattice	excitation	achieved	via	ultrashort	laser	pulses,	and	was	incorporated	into	the	framework	of
CAC	to	provide	a	coupled	treatment	for	defect	dynamics	and	phonon	thermal	transport.	A	first	attempt	was	made	to	pass	full	phonon
spectrum	from	the	atomistic	domain	to	the	coarse-grained	domain	by	introducing	a	wave-based	interpolation	scheme	[42].

A	brief	history	of	CAC

22

https://shuozhixu.cnsi.ucsb.edu/
https://smartech.gatech.edu/handle/1853/56314
https://scholar.google.com/citations?user=qdz0cy4AAAAJ&hl=en
http://ufdc.ufl.edu/UFE0050325/00001

Figure	5.	Normalized	kinetic	energy	distribution	in	simulations	of	the	propagation	of	dislocations	and	a	heat	pulse:	(a-c)	a	moving
dislocation	before	meeting	a	heat	pulse,	showing	that	the	motion	of	the	dislocation	is	accompanied	by	radial-shaped	wavefronts	of
phonons	ahead	of	the	moving	dislocation	and	V-shaped	wave	tails	in	the	wake	of	the	dislocation;	(d)	the	dislocation	meeting	with	a
propagating	heat	pulse;	(e-f)	an	array	of	moving	dislocations	meeting	with	the	heat	pulse	showing	partially	coherent	partially	diffuse
scattering	of	the	phonons	by	the	moving	dislocations	[40].

The	groups	of	Profs.	McDowell,	Chen,	and	Xiong	are	still	actively	advancing	the	CAC	method.	Keep	an	eye	on	the	CAC	publications
for	the	latest	progress!

References

1.	 Youping	Chen,	James	Lee.	Atomistic	formulation	of	a	multiscale	theory	for	nano/micro	physics,	Philos.	Mag.	85	(2005)	4095-
4126

2.	 Youping	Chen.	Reformulation	of	microscopic	balance	equations	for	multiscale	materials	modeling,	J.	Chem.	Phys.	130	(2009)
134706

3.	 Youpig	Chen,	James	D.	Lee,	Azim	Eskandarian,	Atomistic	counterpart	of	micromorphic	theory,	Acta	Mech.	161	(2003)	81-102
4.	 Youping	Chen,	Jonathan	Zimmerman,	Anton	Krivtsov,	David	L.	McDowell.	Assessment	of	atomistic	coarse-graining	methods,
Int.	J.	Eng.	Sci.	49	(2011)	1337-1349

5.	 Youping	Chen,	James	Lee,	Liming	Xiong.	A	generalized	continuum	theory	and	its	relation	to	micromorphic	theory,	J.	Eng.	Mech.
135	(2009)	149-155

6.	 Liming	Xiong,	Youping	Chen,	James	D.	Lee.	Modeling	and	simulation	of	boron-doped	nanocrystalline	silicon	carbide	thin	film
by	a	field	theory,	J.	Nanosci.	Nanotech.	9	(2009)	1034-1037

7.	 Liming	Xiong,	Youping	Chen,	James	Lee.	Simulation	of	dislocation	nucleation	and	motion	in	single	crystal	magnesium	oxide	by
a	field	theory,	Comput.	Mater.	Sci.	42	(2008)	168-177

8.	 Liming	Xiong,	Youping	Chen,	James	D.	Lee.	Atomistic	simulation	of	mechanical	properties	of	diamond	and	silicon	carbide	by	a
field	theory,	Modelling	Simul.	Mater.	Sci.	Eng.	15	(2007)	535-551

9.	 J.H.	Irving,	Jhon	G.	Kirkwood.	The	statistical	mechanical	theory	of	transport	processes.	IV.	The	equations	of	hydrodynamics,	J.
Chem.	Phys.	18	(1950)	817-829

10.	 Eugène	Cosserat,	François	Cosserat.	Théorie	des	corps	déformables,	Paris,	(1909)	17-29
11.	 Youpig	Chen,	James	D.	Lee,	Azim	Eskandarian.	Micropolar	theory	and	its	applications	to	mesoscopic	and	microscopic	problems,

Comput.	Modeling	Eng.	Sci.	5	(2004)	35-43
12.	 A.	Cemal	Eringen.	Theory	of	micropolar	elasticity,	in	Microcontinuum	Field	Theories,	Springer	(1999)	101-248
13.	 A.	Cemal	Eringen.	Microcontinuum	Field	Theories:	I.	Foundations	and	Solids,	Springer	(1999)
14.	 A.	Cemal	Eringen.	Mechanics	of	micromorphic	continua,	in:	Mechanics	of	Generalized	Continua.	IUTAM	Symposia

(International	Union	of	Theoretical	and	Applied	Mechanics),	Springer	(1968)
15.	 Liming	Xiong,	Youping	Chen.	Coarse-grained	simulations	of	single-crystal	silicon.	Modelling	Simul.	Mater.	Sci.	Eng.	17	(2009)

035002
16.	 Qian	Deng,	Youping	Chen,	A	coarse-grained	atomistic	method	for	3D	dynamic	fracture	simulation,	J.	Multiscale	Comput.	Eng.	11

(2013)	227-237
17.	 Qian	Deng,	Liming	Xiong,	Youping	Chen.	Coarse-graining	atomistic	dynamics	of	brittle	fracture	by	finite	element	method,	Int.	J.

Plast.	26	(2010)	1402-1414
18.	 Liming	Xiong,	Garritt	Tucker,	David	L.	McDowell,	Youping	Chen.	Coarse-grained	atomistic	simulation	of	dislocations,	J.	Mech.

Phys.	Solids	59	(2011)	160-177
19.	 Liming	Xiong,	Qian	Deng,	Garritt	Tucker,	David	L.	McDowell,	Youping	Chen.	Coarse-grained	atomistic	simulations	of

dislocations	in	Al,	Ni	and	Cu	crystals,	Int.	J.	Plast.	38	(2012)	86–101
20.	 Liming	Xiong,	Qian	Deng,	Garritt	Tucker,	David	L.	McDowell,	Youping	Chen.	A	concurrent	scheme	for	passing	dislocations

from	atomistic	to	continuum	domains,	Acta	Mater.	60	(2012)	899-913

A	brief	history	of	CAC

23

http://www.me.gatech.edu/faculty/mcdowell
http://web.mae.ufl.edu/chenlab
https://www.aere.iastate.edu/lmxiong/
http://dx.doi.org/10.1080/14786430500362595
http://dx.doi.org/10.1063/1.3103887
http://dx.doi.org/10.1007/s00707-002-0981-2
http://dx.doi.org/10.1016/j.ijengsci.2011.03.018
http://dx.doi.org/10.1061/(ASCE)0733-9399(2009)135:3(149)
http://dx.doi.org/10.1166/jnn.2009.C080
http://dx.doi.org/10.1016/j.commatsci.2007.06.018
http://dx.doi.org/10.1088/0965-0393/15/5/011
http://dx.doi.org/10.1063/1.1747782
http://jhir.library.jhu.edu/handle/1774.2/34209
http://dx.doi.org/10.3970/cmes.2004.005.035
http://dx.doi.org/10.1007/978-1-4612-0555-5_5
http://dx.doi.org/10.1007/978-1-4612-0555-5
http://dx.doi.org/10.1007/978-1-4612-0555-5
http://dx.doi.org/10.1007/978-3-662-30257-6_2
http://dx.doi.org/10.1088/0965-0393/17/3/035002
http://dx.doi.org/10.1615/IntJMultCompEng.2013005442
http://dx.doi.org/10.1016/j.ijplas.2010.04.007
http://dx.doi.org/10.1016/j.jmps.2010.11.005
http://dx.doi.org/10.1016/j.ijplas.2012.05.002
http://dx.doi.org/10.1016/j.actamat.2011.11.002

21.	 Liming	Xiong,	David	L.	McDowell,	Youping	Chen.	Nucleation	and	growth	of	dislocation	loops	in	Cu,	Al	and	Si	by	a	concurrent
atomistic-continuum	method,	Scr.	Mater.	67	(2012)	633–636

22.	 Liming	Xiong,	Ji	Rigelesaiyin,	Xiang	Chen,	Shuozhi	Xu,	David	L.	McDowell,	Youping	Chen.	Coarse-grained	elastodynamics	of
fast	moving	dislocations,	Acta	Mater.	104	(2016)	143-155

23.	 Liming	Xiong,	Shuozhi	Xu,	David	L.	McDowell,	Youping	Chen.	Concurrent	atomistic-continuum	simulations	of	dislocation-void
interactions	in	fcc	crystals,	Int.	J.	Plast.	65	(2015)	33-42

24.	 Liming	Xiong,	Xiang	Chen,	Ning	Zhang,	David	L.	McDowell,	Youping	Chen.	Prediction	of	phonon	properties	of	1D	polyatomic
systems	using	concurrent	atomistic-continuum	simulation,	Arch.	Appl.	Mech.	84	(2014)	1665-1675

25.	 Liming	Xiong,	David	L.	McDowell,	Youping	Chen.	Sub-THz	Phonon	drag	on	dislocations	by	coarse-grained	atomistic
simulations,	Int.	J.	Plast.	55	(2014)	268-278

26.	 Liming	Xiong,	Youping	Chen.	Effects	of	dopants	on	the	mechanical	properties	of	nanocrystalline	silicon	carbide	thin	film,
Comput.	Modeling	Eng.	Sci.	24	(2008)	203-214

27.	 Shengfeng	Yang,	Liming	Xiong,	Qian	Deng,	Youping	Chen.	Concurrent	atomistic	and	continuum	simulation	of	strontium	titanate,
Acta	Mater.	61	(2013)	89–102

28.	 Shengfeng	Yang,	Youping	Chen.	Concurrent	atomistic	and	continuum	simulation	of	bi-crystal	strontium	titanate	with	tilt	grain
boundary,	Proc.	R.	Soc.	A	471	(2015)	20140758

29.	 Shengfeng	Yang,	Youping	Chen,	Concurrent	atomistic-continuum	simulation	of	defects	in	polyatomic	ionic	materials,	in
Multiscale	Materials	Modeling	for	Nanomechanics	(ed:	Christopher	R.	Weinberger,	Garritt	J.	Tucker),	Switzerland:	Springer
International	Publishing,	2016

30.	 Shengfeng	Yang,	Ning	Zhang,	Youping	Chen.	Concurrent	atomistic-continuum	simulation	of	polycrystalline	strontium	titanate,
Philos.	Mag.	95	(2015)	2697-2716

31.	 Shuozhi	Xu,	Liming	Xiong,	Qian	Deng,	David	L.	McDowell.	Mesh	refinement	schemes	for	the	concurrent	atomistic-continuum
method,	Int.	J.	Solids	Struct.	90	(2016)	144-152

32.	 Shuozhi	Xu,	Rui	Che,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	A	quasistatic	implementation	of	the	concurrent
atomistic-continuum	method	for	FCC	crystals,	Int.	J.	Plast.	72	(2015)	91–126

33.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Shear	stress-	and	line	length-dependent	screw	dislocation	cross-
slip	in	FCC	Ni,	Acta	Mater.	122	(2017)	412-419

34.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Edge	dislocations	bowing	out	from	a	row	of	collinear	obstacles
in	Al,	Scr.	Mater.	123	(2016)	135-139

35.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	An	analysis	of	key	characteristics	of	the	Frank-Read	source
process	in	FCC	metals,	J.	Mech.	Phys.	Solids	96	(2016)	460-476

36.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Validation	of	the	concurrent	atomistic-continuum	method	on
screw	dislocation/stacking	fault	interactions,	Crystals	7	(2017)	120

37.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Sequential	slip	transfer	of	mixed	character	dislocations	across	
Σ3	coherent	twin	boundary	in	FCC	metals:	A	concurrent	atomistic-continuum	study,	npj	Comput.	Mater.	2	(2016)	15016

38.	 Shuozhi	Xu,	Liming	Xiong,	Youping	Chen,	David	L.	McDowell.	Comparing	EAM	potentials	to	model	slip	transfer	of	sequential
mixed	character	dislocations	across	two	symmetric	tilt	grain	boundaries	in	Ni,	JOM	69	(2017)	814-821

39.	 Xiang	Chen,	Weixuan	Li,	Liming	Xiong,	Yang	Li,	Shengfeng	Yang,	Zexi	Zheng,	David	L.	McDowell,	Youping	Chen.	Ballistic-
diffusive	phonon	heat	transport	across	grain	boundaries,	Acta	Mater.	136	(2017)	355-365

40.	 Xiang	Chen,	Liming	Xiong,	David	L.	McDowell,	Youping	Chen.	Effects	of	phonons	on	mobility	of	dislocations	and	dislocation
arrays,	Scr.	Mater.	137	(2017)	22-26

41.	 Xiang	Chen,	Aleksandr	Chernatynskiy,	Liming	Xiong,	Youping	Chen.	A	coherent	phonon	pulse	model	for	transient	phonon
thermal	transport,	Comput.	Phys.	Comm.	195	(2015)	112–116

42.	 Xiang	Chen,	Adrian	Diaz,	Liming	Xiong,	David	L.	McDowell,	Youping	Chen.	Passing	waves	from	atomistic	to	continuum,	J.
Comput.	Phys.	354	(2018)	393-402

A	brief	history	of	CAC

24

http://dx.doi.org/10.1016/j.scriptamat.2012.07.026
http://dx.doi.org/10.1016/j.actamat.2015.11.037
http://dx.doi.org/10.1016/j.ijplas.2014.08.002
http://dx.doi.org/10.1007/s00419-014-0880-8
http://dx.doi.org/10.1016/j.ijplas.2013.11.004
http://dx.doi.org/10.3970/cmes.2008.024.203
http://dx.doi.org/10.1016/j.actamat.2012.09.032
http://dx.doi.org/10.1098/rspa.2014.0758
http://dx.doi.org/10.1007/978-3-319-33480-6_8
http://dx.doi.org/10.1080/14786435.2015.1076178
http://dx.doi.org/10.1016/j.ijsolstr.2016.03.030
http://dx.doi.org/10.1016/j.ijplas.2015.05.007
http://dx.doi.org/10.1016/j.actamat.2016.10.005
http://dx.doi.org/10.1016/j.scriptamat.2016.06.018
http://dx.doi.org/10.1016/j.jmps.2016.08.002
http://dx.doi.org/10.3390/cryst7050120
http://dx.doi.org/10.1038/npjcompumats.2015.16
http://dx.doi.org/10.1007/s11837-017-2302-1
http://dx.doi.org/10.1016/j.actamat.2017.06.054
http://dx.doi.org/10.1016/j.scriptamat.2017.04.033
http://dx.doi.org/10.1016/j.cpc.2015.05.008
http://dx.doi.org/10.1016/j.jcp.2017.10.038

A	brief	history	of	CAC

25

Algorithm
A	framework	for	mixed	atomistic/continuum	modeling,	the	CAC	algorithm	adopts	common	atomistic	modeling	and	finite	element
techniques.	In	the	atomistic	domain,	Newton’s	third	law	is	employed	to	promote	efficiency	in	calculating	the	force,	pair	potential,	local
electron	density,	and	stress.	The	short-range	neighbor	search	employs	a	combined	cell	list	and	Verlet	list	method.	In	the	coarse-grained
domain,	the	Garlekin	method	and	Gaussian	quadrature	are	employed	to	solve	the	governing	equations.

There	are,	however,	several	issues	in	CAC	simulations	with	coarse-graining	that	do	not	exist	in	standard	atomistic	and	finite	element
method	simulations.

For	more	information,	read	chapter	3	of	Shuozhi	Xu's	Ph.D.	dissertation.

Algorithm

26

https://smartech.gatech.edu/handle/1853/56314

Scheme

A	flowchart	of	the	CAC	simulation	scheme	based	on	spatial	decomposition	is	presented	below:

where	there	are	three	types	of	CAC	simulations:	dynamics,	quasistatics,	and	hybrid,	specified	by	the	simulator.

In	CAC	simulations,	the	elements/nodes/atoms	information	can	either	be	created	from	scratch	(model_setup.f90)	or	read	from	the
	cac_in.restart		file	(read_restart.f90),	depending	on	the	parameters	in	the	restart	command.

The	dynamic	CAC	scheme	is

Scheme

27

The	quasistatic	CAC	scheme	is

Scheme

28

The	hybrid	CAC	scheme	is

Scheme

29

All	these	four	figures	are	respectively	adapted	from	Fig.	1,	Fig.	S1,	Fig.	S2,	and	Fig.	2	of	Xu	et	al.,	2018.	More	information	of	the
dynamic	and	quasistatic	CAC	can	be	found	in	the		dynamics		and		minimize		commands,	respectively.

Scheme

30

http://dx.doi.org/10.1557/jmr.2018.8

Parallelization

Among	the	three	parallel	algorithms	commonly	employed	in	atomistic	simulations	—	atom	decomposition	(AD),	force	decomposition
(FD),	and	spatial	decomposition	(SD),	SD	yields	the	best	scalability	and	the	smallest	communication	overhead	between	processors.
Unlike	AD	and	FD,	the	workload	of	each	processor	in	SD,	which	is	proportional	to	the	number	of	interactions,	is	unfortunately	not
guaranteed	to	be	the	same.	In	CAC,	the	simulation	cell	has	nonuniformly	distributed	integration	points	(in	the	coarse-grained	domain)
and	atoms	(in	the	atomistic	domain),	such	that	the	workload	is	poorly	balanced	if	one	assigns	each	processor	an	equally-sized	cubic
domain	as	in	full	atomistics.	This	workload	balance	issue	is	not	unique	to	CAC,	but	is	also	encountered	by	other	concurrent	multiscale
modeling	methods.

The	PyCAC	code	employs	the	SD	algorithm	in	which	the	load	balance	is	optimized,	as	shown	in	the	figure	below	which	is	adapted
from	Fig.	5	of	Xu	et	al.,	2018.

Parallel	CAC	simulation	scheme.	Procedures	that	do	not	exist	in	the	[serial	CAC	simulation	scheme](scheme.md)	are	highlighted	in
yellow.	Note	that	(i)	in	the	serial	scheme,	the	root	processor	does	everything	and	(ii)	the	two	procedures	in	the	dashed	box	are
conducted	back	and	forth	until	the	output	begins.

Parallelization

31

http://dx.doi.org/10.1557/jmr.2018.8

Arithmetic	precision

To	ensure	the	processor-independent	precision,	the	working	precision	(wp)	is	defined	in	the		precision_comm_module.f90		module
file.

The	default	precision	is	64-bit	real,	the	users	can	opt	for	128-bit	real	by	modifying		wp	.

The	default	size	used	for	an	integer	is	KIND	=	4,	meaning	that	any	integer	may	have	a	signed	value	ranging	from	-2,147,483,648	to
2,147,483,647.	In	PyCAC,	the	maximum	integer	is	usually	the	number	of	atoms	(both	the	real	atoms	in	the	atomistic	domain	and	the
interpolated	atoms	in	the	coarse-grained	domain).	In	the	case	that	each	element	contains	2197	atoms,	this	limit	suggests	that	there
cannot	be	more	than	977,461	elements	in	a	fully	coarse-grained	simulation	cell.	If	the	user	wants	to	study	larger	simulation	cells,
he/she	needs	to	modify	the	source	code.

Arithmetic	precision

32

http://fortranwiki.org/fortran/show/Real+precision

Units

PyCAC	assumes	the	use	of	the	following	defined	molecular	units:

The	unit	of	time	is	10 	seconds	(i.e.,	picoseconds)

The	unit	of	length	is	10 	meters	(i.e.,	Angstroms)

The	unit	of	mass	is	1.66053904 × 10 	kilograms	(i.e.,	Daltons	-	unified	atomic	mass	units)

The	unit	of	energy	is	1.602176565 × 10 	Joules	(i.e.,	eV)

The	unit	of	force	is	1.602176565 × 10 	Newtons	(i.e.,	eV/Angstrom)

The	unit	of	pressure	is	10 	Pascales	(i.e.,	GPa)

−12

−10

−27

−19

−9

9

Units

33

Input

To	run	a	CAC	simulation,	one	may	create/modify		cac.in	,	in	which	the	commands	provide	all	input	parameters	for	a	CAC
simulation.

The		cac.in		file,	along	with	the	potential	files	(embed.tab	,		pair.tab	,	and		edens.tab		for	the	EAM	potential;		lj.para		for	the
LJ	potential),	are	read	by	the	Fortran	CAC	code	to	run	the	CAC	simulation.

The	potential	files	for	some	FCC	metals	are	provided	in	the		potentials		directory.

EAM	potential

The	EAM	formulations	for	potential	energy	E	and	the	force	on	atom	k,	f ,	are

E = V (r) + F ()

f = + +

where

= ρ (r)

Note	that	the	force	formulation	above	only	holds	for	monatomic	pure	materials.

The	first	line	of	each		*.tab		file	is

N	first_val	last_val

where		N		is	a	positive	integer	that	equals	the	number	of	data	pair	(each	line	starting	from	the	second	line),		first_val		and
	last_val		are	non-negative	real	numbers	suggesting	the	first	and	the	last	datum	in	the	first	column	(starting	from	the	second	line),
respectively.

In		embed.tab	,	the	first	column	is	the	unitless	host	electron	energy	 ;	the	second	column	is	the	embedded	energy	F ,	in	eV.

In		pair.tab	,	the	first	column	is	the	interatomic	distance	r,	in	Angstrom;	the	second	column	is	the	pair	potential	V ,	in	eV.
In		edens.tab	,	the	first	column	is	the	interatomic	distance	r,	in	Angstrom;	the	second	column	is	the	unitless	local	electron
density	ρ.

For	example,	the	first	few	lines	of		potentials/eam/Ag/williams/edens.tab		are

3000	0.5018316703334310	5.995011000293092

0.5018316703334310							8.9800288540000004E-002

0.5036633406668621							9.0604138970000001E-002

0.5054950110002930							9.1404200869999990E-002

0.5073266813337241							9.2200486049999988E-002

In	CAC	simulations,	an	approximation	is	introduced	to	calculate	the	host	electron	density	 	of	the	integration	points	in	the	coarse-

grained	domain.	For	more	information,	read	chapter	3	of	Shuozhi	Xu's	Ph.D.	dissertation.

The	readers	may	find	EAM	potential	files	in	these	database:

k

2
1∑i∑

j≠i
j ij ij ∑i ρ̄i

k ∑
j≠k
j [∂rkj

∂V (r)kj kj (∂ρ̄ k

∂F ()ρ̄ k
∂ ρ̄ j

∂F ()ρ̄j) ∂rkj
∂ρ (r)kj kj] rkj

rkj

ρ̄i ∑
j≠i
j ij ij

ρ̄

ρ̄

Input

34

https://smartech.gatech.edu/handle/1853/56314

NIST
University	of	Edinburgh
Other	resources

Note	that	most	of	these	files	do	not	have	the	format	that	suits	the	CAC	simulation.

LJ	potential

The	LJ	formulation	for	potential	energy	is

E = 4ϵ −

where	ϵ	and	σ	are	two	parameters.	In	the	PyCAC	code,	the	interatomic	force,	not	the	energy,	is	shifted	such	that	the	force	goes

continuously	to	zero	at	the	cut-off	distance	r ,	i.e.,	if	r < r ,	f = f(r) − f(r);	otherwise,	f = 0.

In		lj.para	,	a	blank	line	or	a	line	with	the	"#"	character	in	column	one	(a	comment	line)	is	ignored;	three	positive	real	numbers	(ϵ,	σ,

and	r)	and	one	non-negative	real	number	(r)	are	given	in	any	sequence,	where	r 	is	a	place	holder	that	should	always	be	0.0	for	the

LJ	potential.	Note	that	for	the	EAM	potential,	r 	equals	the	minimum	interatomic	distance,	i.e.,	the	smaller		first_val		given	in

	pair.tab		and		edens.tab	.

For	example,		potentials/lj/Cu/kluge/lj.para		reads

#	parameters	for	the	LJ	potential

epsilon			0.167

sigma					2.315

rcmin					0.

rcoff					5.38784

where		epsilon		=	ϵ,		sigma		=	σ,		rcmin		=	r ,	and		rcoff		=	r .

Other	files

When		boolean_restart		=	t,	a		cac_in.restart		file	needs	to	be	provided.	This	file	is	renamed	from	one	of	the		cac_out_#.restart	
files,	where		#		is	a	positive	integer.

When		restart_group_number		>	0,	or		boolean_restart_refine		=	t	and		refine_style		=	group,	one	or	more		group_in_*.id		files
need	to	be	provided,	where		*		is	a	positive	integer.	These	files	are	renamed	from		group_out_*_#.id		files,	which	are	created
automatically	when	the	total	number	of	groups	>	0.	Note	that	if	the		#		here	does	not	match	that	in	the		cac_out_#.restart		file,	the
information	of	the	restart	group	may	be	incorrect.

When		modify_number		>	0	and	at	least	one	of	the		modify_style		=	add_atom,	one	or	more	LAMMPS	data	files		lmp_*.dat		need	to
be	provided,	where		*		is	the	id	of	the	current	modify	command	in		cac.in	.

2
1∑i∑j≠i [(rij

σ)12 (rij
σ)6]

c c c

c 0 0

0

0 c

Input

35

https://www.ctcms.nist.gov/potentials
http://www.homepages.ed.ac.uk/gja/moldy/moldy.html
https://www.ctcms.nist.gov/potentials/resources.html
http://lammps.sandia.gov/doc/2001/data_format.html

Output

A	series	of	vtk	files	created	on-the-fly

The	main	output	of	a	CAC	simulation	are		cac_cg_#.vtk		and		cac_atom_#.vtk		files	that	contain	elemental/nodal	information	and
atomic	information	in	the	coarse-grained	and	the	atomistic	domains,	respectively,	where		#	,	a	non-negative	integer,	is	the	simulation
step	at	which	the	file	is	created.	These	files,	created	by		vtk_legacy.f90		with	a	frequency	of		output_freq	,	can	be	read	by	ParaView.
Note	that	besides	the	nodal/atomic	positions,	the	energy	scalar,	the	force	vector,	and	the	stress	tensor	of	each	node/atom	are	also
recorded	in	these	vtk	files.

One-time	vtk	and	dump	files

Besides	the	files	that	are	created	on-the-fly,	in	the	beginning	of	a	simulation,	a		model_atom.vtk		file	containing	atomic	positions	in	the
atomistic	domain,	a		model_cg.vtk		file	containing	nodal	positions	in	the	coarse-grained	domain,	and	a		model_intpo.vtk		file
containing	integration	point	positions	and	weights	in	the	coarse-grained	domain	are	also	created,	by		vtk_legacy_model.f90	.	A
standard	LAMMPS	dump	file		dump.lammps		which,	in	addition	to	the	positions	of	the	real/interpolated	atoms,	also	contain	the
velocities	of	the	real/interpolated	atoms	if		simulation_style		=	dynamics	or	hybrid,	is	created	by		atomp_plot_lammps.f90	.	When
the	total	number	of	groups	>	0,	multiple		group_cg_*.vtk		and		group_atom_*.vtk		files,	where		*	,	a	positive	integer,	is	the	group	id,
are	created	by		vtk_legacy_group.f90		for	the	coarse-grained	and	the	atomistic	domains,	respectively.	These	files	are	used	to	show
whether	the	initial	simulation	cell	and	group	settings	are	correct.	Different	from	the		cac_cg_#.vtk		and		cac_atom_#.vtk		files,	the
one-time	vtk	files	here	do	not	contain	the	energy/force/stress	information,	but	only	the	nodal/atomic	positions.

All	vtk	and	dump	files	are	then	post-processed	for	visualization	purposes.

Other	files

	cac.log		is	the	log	file	of	a	CAC	simulation,	containing	information	mostly	written	by		cac_log.f90	.

	stress_strain		and		temperature	,	with	a	frequency	of		log_freq	,	record	the	3 × 3	stress/strain	tensors	and	the	temperature,
respectively,	at	certain	simulation	step.

A	series	of		cac_out_#.restart		files,	where		#		is	a	positive	integer,	are	created	with	a	frequency	of		restart_freq	.	One	of	these
files	can	then	be	renamed	to		cac_in.restart		to	restart	a	prior	simulation	when	boolean_restart	=	t.

If		boolean_debug		=	t,	a	writable		debug		file	is	created	by		debug_init.f90	.	The	user	can	then	write	to	it	whatever	he/she	wants
using	unit	number	13,	i.e.,

write(13,	format)	output

When	the	total	number	of	groups	>	0,	a	series	of		group_out_*_#.id		files	are	created,	where		*		is	the	group	id	starting	from	1	and
	#		is	the	simulation	step	at	which	the	file	is	created.	These	files	can	then	be	renamed	to		group_in_*.id		for	restart	group	and
refinement	purposes.

Output

36

http://lammps.sandia.gov/doc/dump.html

Graphical	user	interface
The	PyCAC	graphical	user	interface	(GUI)	is	an	application	that	simplifies	the	creation,	submission,	and	analysis	of	CAC	simulation
projects.	Written	in	Python	3,	the	PyCAC	GUI	provides	a	robust	interface	to	facilitate	parametric	studies	via	CAC	simulations	without
interacting	with	the	Fortran	code	and	to	improve	handling	of	input,	output,	and	visualization	options.	The	module	works	on	local
computers	and	serves	as	an	interface	with	high	performance	computing	clusters.	In	particular,	the	Python	module	consists	of	three
main	functionalities:	Project	creation,	Existing	project	upload,	and	Result	download/conversion.

If	you	are	interested	in	the	using	the	PyCAC	suite	for	your	research,	please	first	email	Prof.	David	L.	McDowell	for	access	to	the	CAC
simulator	package,	then	follow	the	installation	steps.

The	GUI	is	currently	in	its	alpha	release	stage.	For	bug	reports	or	questions	relating	directly	to	the	GUI,	please	contact	Alex	Selimov	or
Kevin	Chu

Graphical	user	interface

37

mailto:david.mcdowell@me.gatech.edu
mailto:aselimov3@gatech.edu
mailto:kchu41@gatech.edu

Installing	PyCAC

Python	version	requirement

The	PyCAC	Graphical	user	interface	(GUI)	is	written	and	tested	on	Python	3.6.5,	but	is	compatible	with	newer	versions	when
available.

To	check	the	installed	version	on	your	system,	from	the	command	line:

$	python	--version

Download	and	install
PyCAC	may	be	installed	directly	from	PyPi	using	pip:

$	pip	install	pycac

If	you	downloaded	a	PyCAC	release	from	the	GitHub,	replacing		V.v.v		with	the	version	number	indicated	in	the	filenames:

$	pip	install	pycac-V.v.v-none-any.whl

OR

$	pip	install	pycac-V.v.v.tar.gz

Configure

Once	installed,	PyCAC	needs	to	be	configured	to	communicate	with	the	compute	cluster.	This	will	also	install	the	CAC	simulator	to
the	cluster:

$	python	-m	pycac	--configure

Please	ensure	that	the	correct	workload	manager	is	selected	in	this	step.	PyCAC	may	now	be	used	to	create	new	CAC	jobs.

Installation

38

https://www.python.org/downloads/release/python-365/
https://pypi.org/project/pycac/
https://github.com/GT-McDowell-Lab/PyCAC/tree/master/gui/dist

PyCAC	project	creation
Once	you	have	installed	PyCAC,	the	application	can	be	run	from	the	install	directory:

$	python	-m	pycac	-j

From	the	launch	window,	select	Create	Input	File	to	access	the	CAC	job	creator.	A	CAC	input	script	is	generated,	and	a	local	project
folder	containing	the	necessary	files	to	run	a	CAC	job	is	created.	Click	Next	once	the	appropriate	fields	are	filled,	and	correct	any
errors	indicated.	One	can	elect	to	set	up	parametric	study	of	select	commands,	and	choose	to	only	build	the	folder	on	the	local	machine
for	direct	runs,	or	submit	the	job	to	a	performance	computing	cluster,	e.g.,	those	on	NSF	XSEDE.

Security	concerns

The	open-source	and	highly-vetted	Python	implementation	of	the	SSH2	protocol,	paramiko	is	used	to	handle	secure	connections	with
the	cluster.

PyCAC	project	creation

39

http://www.xsede.org
https://pypi.org/project/paramiko/

Existing	project	upload
Start	the	main	GUI	application

$	python	-m	pycac	-j

Select	Submit	Job	and	find	the	project	folder	to	upload.	This	should	follow	the	format	folder	created	using	the	job	creation	tool,
consisting	of	a	project	folder,	and	self-contained	sub-folders	of	individual	runs	as	follows:

				|-projectname/

				|-----|Run1/

				|-----|----|input.in

				|-----|----|potential	files	(*.tab	or	*.lj)

				|-----|----|restart	files(optional)

				|-----|Run2/

			

The	existing	values	will	be	validated,	and	one	can	adjust	the	values	if	desired.	Job	submission	and	parameterization	proceeds	as	in	the
job	creation	mode

Note	that	any	parameterizations	defined	here	will	create	simulation	subdirectories	in	addition	to	the	ones	existing	in	the	project	folder.

Existing	project	upload

40

Results	download
Start	the	main	GUI	application

$	python	-m	pycac	-j

Select	Download	Project	Results	and	proceed	to	the	next	panel.	Choose	the	desired	download	location	for	project	results.	Choose	one
or	more	Project	Name(s)	to	download.	Note	that	only	jobs	submitted	through	PyCAC	will	appear	in	the	dropdown	options;	however
one	can	specify	a	known	cluster	directory	by	selecting	Other

VTK	to	dump	conversion

To	save	space	on	the	cluster,	the	CAC	simulator	only	produces	VTK	files.	One	can	elect	to	convert	these	VTK	to	LAMMPS-style
dump	files	that	can	be	visualized	by	atomistic	model	viewers	and/or	read	by	LAMMPS	directly	to	carry	out	equivalent	fully-resolved
atomistic	simulations.	By	default,	the	convertor	will	use	the	VTK	file	boundaries,	but	custom	boundaries	can	be	defined.	Please	see	the
fortran	convertor	if	built-in	conversion	fails.

Results	download

41

http://lammps.sandia.gov/doc/dump.html
http://lammps.sandia.gov/doc/read_dump.html

Parameteric	study
PyCAC	facilitates	parametric	study	of	select	variables	in	CAC	simulations.	From	the	job	submission	window,	click	+	to	add	a	new
parameterization,	and	select	the	desired	command	and	available	values	from	the	dropdown	menus.	Fill	in	desired	parameters	for
Increase	and	Number	of	Steps.

Single-value	parameters

As	an	example,	if	we	choose	to	parameterize	the	command		grain_dir			overlap	,	with	Increase	=	5.0	and	Number	of	Steps	=	10".

Initially	the	command	in	the	input	file	reads:

grain_dir	2	0.0

10	additional	simulation	folders	will	be	created,	increasing	the	base	value	of	overlap	to	5.0	from	0.0.	The	lines	in	the	corresponding
input	scripts	would	change	as	follows:

grain_dir	2	0.5

grain_dir	2	1.0

...

grain_dir	2	5.0

Vector-value	parameters

If	the	command	to	be	parameterized	is	vector-valued,	for	example	in	grain	orientations	defined	in		grain_mat	,	then	Increase	should
similarly	be	a	vector	[di,	dj,	dk].	The	text	field	will	indicate	if	this	special	format	is	required.

Multiple	parameterizations

Multiple	parameterizations	in	one	project	can	be	declared.	If	the	number	of	steps	are	N	and	M	for	the	first	and	second
parameterizations,	respectively,	(N+1)x(M+1)	total	simulations	will	be	generated.

Parametric	study

42

Command
This	chapter	describes	how	the	commands	that	are	used	to	define	a	CAC	simulation	are	formatted	in	a	CAC	input	script		cac.in	.

In	a	CAC	simulation,	default	settings	for	some	commands	are	first	established	by		defaults.f90	,	then	the	entire		cac.in		is	read	to
override	some	of	the	default	settings:	(i)	a	blank	line	or	a	line	with	the	"#"	character	in	column	one	(a	comment	line)	is	discarded,	and
(ii)	each	command	should	contain	no	more	than	200	characters.	Subsequently,		input_checker.f90		is	run	to	check	whether	all
commands	that	do	not	have	default	settings	are	provided	in		cac.in	.	In	preparing		cac.in	,	it	is	important	to	follow	the	syntax	and	to
distinguish	between	an	interger	and	a	real	number,	e.g.,	a	real	number	must	be	written	as	2.	or	2.0,	instead	of	2.

The	sequence	of	the	commands	in		cac.in		does	not	matter,	except	for	the	modify,	group,	fix,	and	cal	commands,	in	which	case	extra
commands	that	(i)	appear	later	and	(ii)	exceed	the	numbers	in		modify_number	,		new_group_number	,		fix_number	,	and		cal_number	,
respectively,	will	be	ignored.	For	example,	if		cal_number		=	2,	the	last	cal	command	below	will	be	ignored:

cal	first_group	energy

cal	another_group	force

cal	last_group	stress

During	the	CAC	simulation,	the	user	may	get	a	self-explanatory	error	message,	followed	by	termination	of	the	program	by:

call	mpi_abort(mpi_comm_world,	1,	ierr)

if	something	is	potentially	wrong	or	a	warning	message.

When		boolean_restart		=	t,	the	elements/nodes/atoms	are	read	from	the		cac_in.restart		file,	in	which	case	all	commands	in	the
Simulation	Cell	category	below	become	irrelevant;	otherwise,	the	simulation	cell	is	built	from	scratch.

Below	is	a	list	of	all	34	CAC	commands,	grouped	by	category.

Simulation	Cell

boundary,	box_dir,	grain_dir,	grain_mat,	grain_move,	grain_num,	modify_num,	modify,	subdomain,	unit_num,	unit_type,	zigzag

Materials

lattice,	mass,	potential

Settings

cal,	constrain,	dump,	dynamics,	element,	group_num,	group,	limit,	minimize,	neighbor,	simulator,	temperature

Actions

deform,	fix,	refine,	restart,	run

Miscellanies

convert,	debug

Command

43

Command

44

boundary

Syntax

boundary	x	y	z

	x	,		y	,		z		=	p	or	s

		p	is	periodic

		s	is	non-periodic	and	shrink-wrapped

Examples

boundary	p	s	s

Description

This	command	sets	the	boundary	conditions	of	the	simulation	cell	along	the	x,	y,	and	z	directions.	Along	each	axis,	the	same	condition
is	applied	to	both	the	lower	and	upper	faces	of	the	cell.

p	sets	periodic	boundary	conditions	(PBCs).	The	nodes/atoms	interact	across	the	boundary	and	can	exit	one	end	of	the	cell	and	re-enter
the	other	end.	For	more	information	of	the	PBCs	in	the	coarse-grained	domain,	read	chapter	3	of	Shuozhi	Xu's	Ph.D.	dissertation.

s	sets	non-periodic	boundary	conditions,	where	nodes/atoms	do	not	interact	across	the	boundary	and	do	not	move	from	one	side	of	the
cell	to	the	other.	The	positions	of	both	faces	are	set	so	as	to	encompass	the	nodes/atoms	in	that	dimension,	no	matter	how	far	they
move.

Under	neither	boundary	condition	will	any	nodes/atoms	be	lost	during	a	CAC	simulation.

Related	commands

When	p	is	set	along	a	certain	direction,	the	corresponding	zigzag	is	set	to	f.	In	other	words,	a	boundary	has	to	be	flat	to	apply	the	PBCs.

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	the	boundary	conditions	are	read	from	the
	cac_in.restart		file.

Default

boundary	p	p	p

boundary

45

https://smartech.gatech.edu/handle/1853/56314

box_dir

Syntax

box_dir	x	i	j	k	y	i	j	k	z	i	j	k

	i	,		j	,		k		=	real	number

Examples

box_dir	x	1.	0.	0.	y	0.	1.	0.	z	0.	0.	1.

box_dir	x	1.	0.	0.	y	0.	0.94281	-0.33333	z	0.	0.	1.

box_dir	x	1.	0.	0.	y	0.	0.49237	0.87039	z	0.	0.	1.

Description

This	command	sets	the	orientation	of	the	subdomain	interfaces,	including	the	grain	boundary	(GB)	plane	and	the	atomistic/coarse-
grained	domain	interface,	with	respect	to	the	simulation	cell	when	there	is	more	than	one	grain,	i.e.,		grain_num		>	1.	When
	grain_num		=	1,	this	command	does	not	take	effect.

Assume	that		direction		=	2,	i.e.,	the	grains	are	stacked	along	the	y	direction,	the	first	example	results	in	a	GB	plane	normal	to	the	y
axis;	the	second	example	results	in	a	GB	plane	inclined	with	respect	to	the	y	axis,	as	shown	in	the	figure	below.

box_dir

46

The	[ijk]	vector	here	is	similar	to	those	in	the	group	and	modify	commands.

In	the	literature,	this	command	was	used	to	create	the	Σ3{111}	coherent	twin	boundary	in	Fig.	1	of	Xu	et	al.	2016	and	Fig.	1(a)	of	Xu
et	al.	2017	and	the	Σ11{113}	symmetric	tilt	grain	boundary	in	Fig.	1(b)	of	Xu	et	al.	2017.

Related	commands

As	opposed	to	the	grain_mat	command	whose	orientations	are	for	the	lattice,	the	orientations	in	this	command	are	with	respect	to	the
simulation	cell.	One	may	use	the	convert	command	to	convert	the	crystallographic	orientation	to	the	simulation	cell-based	orientation.

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	subdomain	information.

Related	files

	model_init.f90	,	among	many

box_dir

47

http://dx.doi.org/10.1038/npjcompumats.2015.16
http://dx.doi.org/10.1007/s11837-017-2302-1
http://dx.doi.org/10.1007/s11837-017-2302-1

Default

box_dir	x	1.	0.	0.	y	0.	1.	0.	z	0.	0.	1.

box_dir

48

cal

Syntax

cal	group_name	cal_variable

	group_name		=	a	string	(length	<=	30)

	cal_variable		=	energy	or	force	or	stress

Examples

cal	green_cone	force

cal	small_sphere	stress

Description

This	commands	calculates	certain	quantities	associated	with	new	groups	and/or	restart	groups.	The		group_name		must	match	that	of
one	of	these	groups.

energy	is	the	total	potential	energy	in	a	group	divided	by	the	total	number	of	nodes	and	atoms	in	the	group.	It	is	a	scalar.

force	and	stress	are	the	total	force	and	stress	in	a	group,	respectively.	force	is	a	3 × 1	vector	while	stress	is	a	3 × 3	tensor.

Results	of	this	command	are	written	to		group_cal_#		with	a	frequency	of		reduce_freq	,	where		#		is	the	ID	of	calculation.	For
stress,	a	3 × 3	strain	tensor	of	the	simulation	box	is	appended	right	after	the	stress	tensor.

Related	commands

There	cannot	be	fewer		cal		commands	than		cal_number	,	which	should	not	be	larger	than		new_group_number		+
	restart_group_number	.	When	there	are	more		cal		commands	in		cac.in		than		cal_number	,	those	appearing	later	will	be	ignored.

Related	files

	calculation.f90		and		group_cal.f90	

Default

None.

cal

49

constrain

Syntax

constrain	boolean	i	j	k

	boolean		=	t	or	f

		t	is	true

		f	is	faulse

	i	,		j	,		k		=	real	number

Examples

constrain	f	1.	1.	0.

constrain	t	0.	0.	1.

Description

The	command	decides	whether	and	how	a	force	constraint	is	added	to	the	system.	When		boolean		is	t,	the	equivalent	nodal/atomic
force	vector	is	projected	onto	the	[ijk]	direction	such	that	they	can	only	move	along	that	direction,	either	in	dynamic	or	quasistatic
CAC	simulations.	The	only	exception	is	that	the	external	force	applied	by	the	fix	command	and	the	random	force	Θ(t)	in	Langevin
dynamics	can	be	along	any	direction.

Note	that	the	direction	is	with	respect	to	the	simulation	cell.	For	example,	the	second	example	projects	the	force	vector	onto	the	z	axis
of	the	simulation	cell.

Related	commands

None.

Related	files
	update_force.f90	

Default

constrain	f	0.	0.	1.

constrain

50

convert

Syntax

convert	i	j	k

	i	,		j	,		k		=	real	number

Examples

convert	-1.	1.	2.

convert	1.	-1.	0.

Description

This	command	converts	the	crystallographic	orientation	[i``j``k]	of	each	grain	to	the	orientation	with	respect	to	the	simulation	cell
[i'``j'``k'].	Results	of	this	conversion	will	be	shown	on	the	screen	as

Converted	box	direction	of	grain	#	is	i'	j'	k'

where	the	positive	integer		#		is	the	grain	ID.

For	example,	if	the	lattice	orientation	of	the	second	grain	along	the	x	axis	is	[211],	this	command	will	convert	the	[211]
crystallographic	orientation	into	[100]	and	output

	Converted	box	direction	of	grain	2	is	1.0000	0.0000	0.0000

Related	commands

This	command	is	useful	when	the	user	has	a	set	of	crystallographic	orientations	in	mind	and	wants	to	find	the	orientation	with	respect
to	the	simulation	cell,	e.g.,	to	be	used	in	the	box_dir	command.

Related	files
	convert_direction.f90	

Default

convert	0.	0.	0.

convert

51

convert

52

debug

Syntax

debug	boolean_debug	boolean_mpi

	boolean_debug	,		boolean_mpi		=	t	or	f

		t	is	true

		f	is	faulse

Examples

debug	t	f

debug	t	t

Description

This	command	generates	a	writable	file	named		debug		for	debugging	purpose.	The	file	is	created	only	when		boolean_debug		=	t;	the
unit	number	is	13.	The	user	can	then	write	whatever	he/she	wants	to	the		debug		file	using	unit	number	13,	i.e.,

write(13,	format)	output

When		boolean_mpi		=	t,	all	processors	have	access	to	the		debug		file,	otherwise	only	the	root	does.

Related	commands

None.

Related	files
	debug_init.f90	

Default

debug	f	f

debug

53

deform

Syntax

deform	boolean_def	def_number

							{ij	boolean_cg	boolean_at	def_rate	stress_l	stress_u	flip_frequency}

							time	time_start	time_always_flip	time_end	

	boolean_def	,		boolean_cg	,		boolean_at		=	t	or	f

		t	is	true

		f	is	false

	def_number		=	non-negative	integer	(<=	9)

	ij		=	xx	or	yy	or	zz	or	xy	or	yz	or	yz	or	zy	or	xz	or	zx

	def_rate		=	real	number

	stress_l	,		stress_u		=	positive	real	number

	flip_frequency		=	positive	integer

	time_start	,		time_always_flip	,		time_end		=	non-negative	integer

Examples

deform	t	1	{zx	t	t	0.05	0.6	0.7	10}	time	500	1000	2500

deform	t	2	{xx	t	f	0.01	1.	1.2	20}	{yz	f	t	0.02	0.8	0.9	30}	time	400	600	1900

Description

This	command	sets	up	the	strain-controlled	or	stress-controlled	homogeneous	deformation	of	the	simulation	cell.	Note	that	the	curly
brackets		{		and		}		in	the	syntax/examples	are	to	separate	different	deformation	modes,	the	number	of	which	is		def_number	;	all
brackets	should	not	be	included	in	preparing		cac.in	.

The	deformation	is	applied	only	if		boolean_def		=	t.	The	coarse-grained	and	atomistic	domains	are	deformed	only	if		boolean_cg	
and		boolean_at		are	t,	respectively.

	def_number		sets	the	number	of	superimposed	deformation	modes.

	ij		decides	each	deformation	mode,	i.e.,	how	the	strain	is	applied.	Following	the	standard	indexes	ϵ 	in	continuum	mechanics,		i	

and		j		are	the	face	on	which	and	the	direction	along	which	the	strain	is	applied.	When		i		and		j		are	the	same,	a	uniaxial	strain	is
applied;	otherwise,	a	shear	strain	is	applied.

	def_rate		is	the	strain	applied	at	each	step,	in	units	of		time_step	.

	stress_l		and		stress_u		are	the	lower	and	upper	bounds	of	the	stress	tensor	component	(designated	by		ij)	of	the	simulation	cell,
respectively,	in	GPa.	In	CAC	simulations,	all	stress	components	are	usually	small	at	the	beginning.	Subject	to	the	strain,	most	stress
tensor	components	increase	in	magnitude	until	one	of	them	is	higher	than	the	corresponding		stress_u	,	at	which	point	the	strain	rate

ij

deform

54

tensor	changes	sign,	i.e.,	the	deformation	is	reversed	but	each		ij		remains	unchanged.	Subject	to	the	newly	reversed	strain,	most
stress	tensor	components	decrease	until	one	of	them	is	lower	than	the	corresponding		stress_l	,	in	which	case	the	strain	rate	tensor
changes	sign	again,	i.e.,	the	deformation	is	applied	as	the	initial	setting.	Whether	the	stress	component	is	out	of	bounds	is	monitored
not	at	every	step,	but	at	every		flip_frequency		step.

The	deformation	begins	when	the	simulation	step	equals		time_start		and	stops	when	it	exceeds		time_end	.

When	(i)	the	simulation	step	is	larger	than		time_always_flip		and	(ii)	the	simulation	step	does	not	exceed		time_end		and	(iii)	the
strain	rate	tensor	did	not	change	sign	previously,	the	strain	rate	tensor	changes	sign	at	every	step,	regardless	of	the	stress	bounds
defined	by		stress_l		and		stress_u	.	This	is	used,	e.g.,	to	keep	a	quasi-constant	strain	while	the	nodes	and	atoms	adjust	their
positions	in	dynamic	or	quasistatic	equilibrium.	To	disable	this	option,	the	user	may	set		time_always_flip		to	be	larger	than
	time_end	.

Related	commands

Groups	defined	by	the	group	command	may	be	homogeneously	deformed	along	with	the	simulation	cell,	depending	on	the	value	of
	boolean_def		set	in	the	fix	command.

Related	files

	deform_init.f90		and		deform_box.f90	

Default

deform	f	1	xx	f	f	0.	0.	0.	1	time	0	0	0

deform

55

dump

Syntax

dump	output_freq	reduce_freq	restart_freq	log_freq

	output_freq	,		reduce_freq	,		restart_freq	,		log_freq		=	positive	integer

Examples

dump	500	300	1000	10

Description

This	command	sets	the	frequency	with	which	the	output	is	performed.	For	example,	when	a	certain	frequency	is	100,	the
corresponding	output	is	conducted	when	the	total	step	is	divisible	by	100.

	output_freq		sets	the	frequency	with	which	the		dump.#		files	(readable	by	OVITO)	and	the		*.vtk		files	(readable	by	ParaView)	are
written	to	the	disk	system.	The	user	may	then	post-process	these	files	for	visualization	purpose	and	for	further	analysis.

	reduce_freq		sets	the	frequency	with	which	certain	quantities	are	written	to		group_cal_#		(when		cal_number		>	0)	and	cac.log		by
root,	which	MPI_Reduces	relevant	information	from	other	processors.

	restart_freq		sets	the	frequency	with	which	the		cac_out_#.restart		files	are	written	to	the	disk	system.	These	files	can	be	read	to
restart	simulations.	If	the	total	number	of	groups	>	0,	a	series	of		group_out_*_#.id		files	are	also	created.	These	files	can	be	read	to
provide	restart	groups.

	log_freq		sets	the	frequency	with	which	one	line	is	written	to	the		cac.log		file	and	the	screen	to	monitor	the	simulation	progress.

Related	commands

None.

Related	files

	dump_init.f90		and		dump.f90	

Default

dump	1000	1000	5000	50

dump

56

http://www.ovito.org/
http://www.paraview.org/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce

dynamics

Syntax

dynamics	dyn_style	energy_min_freq	damping_coefficient

	dyn_style		=	ld	or	qd	or	vv

		ld	is	Langevin	dynamics

		qd	is	quenched	dynamics

		vv	is	Velocity	Verlet

	energy_min_freq		=	positive	integer

	damping_coefficient		=	positive	real	number

Examples

dynamics	ld	300	1.

dynamics	qd	500	5.

Description

This	command	sets	the	style	of	the	dynamic	run	in	CAC	simulations.

When		dyn_style		=	ld,	the	Langevin	dynamics	is	performed,	i.e.,

m = F− γm +Θ(t)

where	m	is	the	normalized	lumped	mass	or	the	atomic	mass,	R	is	the	nodal/atomic	position,	F	is	the	equivalent	nodal/atomic	force,	γ

is	the		damping_coefficient		in	ps ,	and	t	is	the	time	in	ps.	The	Velocity	Verlet	form	is	employed	to	solve	the	equations	of	motion,	as

given	in	Eqs.	1-3	in	Xu	et	al.,	2016.	The	velocity	 	is	updated	in		langevin_vel.f90	.

The	ld	style	is	used	to	keep	a	constant	temperature	in	CAC	simulations	by	adding	to	the	force	F	a	time-dependent	Gaussian	random

variable	Θ(t)	with	zero	mean	and	variance	of	 ,	where	m	is	the	atomic	mass,	k 	is	the	Boltzmann	constant	(

8.6173324 × 10 eV/K),	T 	is	the	temperature	in	K,	and	Δt	is	the		time_step		in	ps.	The	random	variable	is	calculated	and	added	to

the	force	in		langevin_force.f90	.	Note	that	when	T = 0,	the	equation	above	reduces	to

m = F− γm

which	is	the	equation	of	motion	in	damped	molecular	dynamics.

When		dyn_style		=	qd,	the	quenched	dynamics	is	performed,	in	which

if	the	force	and	velocity	point	in	opposite	directions,	the	velocity	is	zeroed,	i.e.,

if 	 ⋅ F < 0, = 0

R̈ Ṙ

−1

Ṙ

√
2mγk T/ΔtB

B

−5

R̈ Ṙ

Ṙ Ṙ

dynamics

57

https://en.wikipedia.org/wiki/Langevin_dynamics
http://dx.doi.org/10.1016/j.ijsolstr.2016.03.030

otherwise,	the	velocity	is	projected	along	the	direction	of	the	force,	such	that	only	the	component	of	velocity	parallel	to	the	force
vector	is	used,	i.e.,

if 	 ⋅ F ≥ 0, =

Note	that	with	the	qd	style,	which	was	first	used	in	Xu	et	al.,	2016,	the	temperature	is	considered	0	K	or	very	nearly	so.

When		dyn_style		=	vv,	a	dynamic	simulation	following

m = F

is	performed	using	the	Velocity	Verlet	scheme.

Note	that	the	vv	style	cannot	be	used	to	keep	a	constant	temperature	and	the	qd	style	cannot	be	used	to	keep	a	finite	temperature.	When
	boolean		=	t,	if	the	vv	style	is	chosen	and	if,	for	a	finite	temperature,	the	qd	style	is	chosen,	the	user	will	get	a	warning	message.

The		energy_min_freq		is	the	frequency	with	which	the	energy	minimization	is	performed	during	a	dynamic	run.	This	is	relevant	only
if		simulator_style		=	hybrid.

Related	commands

run	and	simulator.

Related	files

	dynamics_init.f90	,		dynamics.f90	,		langevin_dynamics.f90	,		quenched_dynamics.f90	,		hybrid.f90	,	among	many

Default

dynamics	vv	500	1.

Ṙ Ṙ ∣F∣2
(⋅F)FṘ

R̈

dynamics

58

http://dx.doi.org/10.1038/npjcompumats.2015.16

element

Syntax

element	mass_matrix	intpo_depth

	mass_matrix		=	lumped	or	consistent

	intpo_depth		=	1	or	2

Examples

element	lumped	2

element	consistent	1

Description

This	command	sets	the	element	type	used	in	the	finite	element	calculation	in	the	coarse-grained	domain.

For		mass_matrix	,	the	lumped	type	approximates	the	mass	of	each	element	and	distributes	it	to	the	nodes;	the	consistent	type
distributes	the	exact	mass	over	the	entire	element.

	intpo_depth		decides	whether	the	first	nearest	neighbor	(1NN)	or	the	second	nearest	neighbor	(2NN)	elements	are	employed	in	the
coarse-grained	domain;	their	differences	are	illustrated	in	Fig.	B26	of	Xu	et	al.,	2015.

Related	commands

The	atomic	mass	is	provided	in	the	mass	command.

Related	files

	mass_matrix.f90	,		integration_point.f90	,	and		update_equiv.f90	

Default

element	lumped	2

element

59

http://dx.doi.org/10.1016/j.ijplas.2015.05.007

fix

Syntax

fix	group_name	boolean_release	boolean_def

				assign_style	assign_x	assign_y	assign_z	disp_lim

				time	time_start	time_end

				boolean_grad

				grad_ref_axis	grad_assign_axis

				grad_ref_l	grad_ref_u

	group_name		=	a	string	(length	<=	30)

	boolean_release	,		boolean_def	,		boolean_grad		=	t	or	f

		t	is	true

		f	is	false

	assign_style		=	disp	or	force

	assign_x	,		assign_y	,		assign_z		=	real	number	or	null

	disp_lim		=	non-negative	real	number

	time_start	,		time_end		=	non-negative	integer

	grad_ref_axis	,		grad_assign_axis		=	1	or	2	or	3

	grad_ref_l	,		grad_ref_u		=	real	number	or	inf

Examples

fix	big_sphere	t	t	disp	0.	null	0.	5.	time	0	2500	f

fix	blue_cone	t	t	disp	5.	0.	0.	10.	time	0	2500	t	2	1	50.	60.

fix	top_box	t	t	force	0.	1.	0.	3.	time	0	2500	t	3	2	100.	10.

Description

This	command	applies	displacements	and/or	forces	to	new	groups	and	restart	groups,	the	numbers	of	which	are	provided	in	the
group_num	command.	The	number	of		fix		commands	is		fix_number	.	The	new	groups	are	created	by	first	providing	the
elements/nodes/atoms	information	in	the	group	command,	while	the	same	information	for	the	restart	groups,	which	are	introduced
when		restart_group_number		>	0,	is	read	from		group_in_*.id	,	where		*		is	a	positive	integer	starting	from		new_group_number		+
1.

When	the	groups	are	at	the	simulation	cell	boundaries,	this	command	is	useful	in	applying	displacement,	traction,	or	mixed	boundary
conditions.

	group_name		must	match	one	of	the	new	groups	or	restart	groups.	All	in	this	command	take	effect	only	when		time_start		<
simulation	step	<		time_end	,	unless	stated	otherwise.

fix

60

when	simulation	step	>		time_end	,	the	group	is	no	longer	assigned	a	displacement/force	if		boolean_release		=	t;	the	group	is
assigned	a	displacement/force	vector	[assign_x	,		assign_y	,		assign_z]	whose	non-null	components	are	zeroed.

When		boolean_def		=	t,	the	group	is	deformed	along	with	the	simulation	box.	The	deformation-induced	displacement	is	added	on	top
of	the	assigned	displacement/force.

	assign_style		=	disp	or	force,	meaning	that	a	displacement	or	force	vector	[assign_x	,		assign_y	,		assign_z],	in
Angstrom/	time_step		or	eV/Angstrom,	is	applied	to	all	nodes/atoms	in	the	group	at	each	simulation	step,	after	their	interatomic
potential-based	displacement/force	is	discarded.	If	any	component	of	the	displacement/force	vector	is	null,	no	displacement/force	is
assigned	to	this	component.	In	the	first	example,		big_sphere		is	fixed	along	the	x	and	z	directions	but	not	along	the	y	direction.

	disp_lim		is	the	upper	bound	of	the	magnitude	of	the	total	group	displacement,	in	units	of		lattice_constant	.	If	the	total
displacement	magnitude	(in	Angstrom	instead	of	in	Angstrom/	time_step)	is	larger	than		disp_lim	,	the	displacement	vector	is
zeroed,	regardless	of	whether		time_end		is	reached	or	what	value		boolean_release		is.		disp_lim		is	irrelevant	when
	assign_style		=	force.	However,	it	needs	to	be	provided	regardless.

When		boolean_grad		=	f,	the	same	displacement/force	vector	[assign_x	,		assign_y	,		assign_z]	is	assigned	to	all	nodes/atoms	of
the	group;	the	following	options,	including		grad_ref_axis	,		grad_assign_axis	,		grad_ref_l	,	and		grad_ref_u	,	become	irrelevant
and	do	not	need	to	provided.

When		boolean_grad		=	t,	the	displacement/force	is	assigned	to	the	group	gradiently,	i.e.,	different	elements/nodes/atoms	in	the	group
may	have	a	different	[assign_x	,		assign_y	,		assign_z]	vector.	The		grad_assign_axis		component	of	the	displacement/force
vector	is	linearly	applied	to	the	group	based	on	the	positions	of	elements/nodes/atoms	along	the		grad_ref_axis		direction.
	grad_ref_l		and		grad_ref_u		are	the	bounds	of	the	graded	displacement/force,	in	units	of	the	component	of	the	lattice	periodicity

length	vector	 	along	the		grad_ref_axis		direction,	with	inf	referring	to	the	lower	(grad_ref_l)	and	upper	(grad_ref_u)

simulation	cell	boundaries.

If		grad_ref_l		<		grad_ref_u	,	the	elements/nodes/atoms	located	at	or	below		grad_ref_l		are	assigned	a	zero	displacement/force
vector,	i.e.,	fixed;	those	located	at	or	above		grad_ref_u		are	assigned	[assign_x	,		assign_y	,		assign_z].	If		grad_ref_l		>
	grad_ref_u	,	the	elements/nodes/atoms	located	at	or	above		grad_ref_l		are	assigned	a	zero	displacement/force	vector,	i.e.,	fixed;
those	located	at	or	below		grad_ref_u		are	assigned	[assign_x	,		assign_y	,		assign_z].	In	any	case,	the	elements/nodes/atoms
located	between		grad_ref_l		and		grad_ref_u		are	assigned	a	vector	whose		grad_assign_axis		component	is	linearly	graded	while
the	other	two	components	remain	the	same	with	respect	to	[assign_x	,		assign_y	,		assign_z].

In	the	second	example,	the	elements/nodes/atoms	which	are	located	below	50.0 ⋅ [2]	along	the	y	axis	(because		grad_ref_axis		=	2)

are	assigned	a	zero	displacement	vector;	those	located	above	60.0 ⋅ [2]	along	the	y	axis	are	assigned	[assign_x	,		assign_y	,

	assign_z];	those	in	between	are	assigned	a	linearly	graded	displacement	vector	whose	x	component	(because		grad_assign_axis		=
1)	is	varied	between	zero	and		assign_x		while	its	y	and	z	components	are		assign_y		and		assign_z	,	respectively.

In	the	third	example,	the	elements/nodes/atoms	which	are	located	below	10.0 ⋅ [3]	along	the	z	axis	(because		grad_ref_axis		=	3)

are	assigned	[assign_x	,		assign_y	,		assign_z];	those	located	above	100.0 ⋅ [3]	along	the	z	axis	are	assigned	a	zero	force	vector;

those	in	between	are	assigned	a	linearly	graded	force	vector	whose	y	component	(because		grad_assign_axis		=	2)	is	varied	between
zero	and		assign_y		while	its	x	and	z	components	are		assign_x		and		assign_z	,	respectively.

Note	that	for	each	group	concerned	in	this	command,	the	displacement	and	force	vectors	are	added	to	relevant	nodes/atoms	after	their
interatomic	potential-based	displacement/force	vectored	are	zeroed.	In	particular,	the	force,	stress,	and	energy	are	zeroed	if
	assign_style		=	disp;	the	force,	stress,	and	energy	are	replaced	with	those	induced	by	this	command	if		assign_style		=	force.	In
both	cases,	the	velocity	vectors	are	also	zeroed	in	dynamic	and	hybrid	CAC.

l′0

l′0

l′0

l′0

l′0

fix

61

In	this	sense,	if	the	same	atoms/nodes	are	included	in	multiple	groups	that	are	also	concerned	in	this	command,	those	appearing	in	the
later	fix	commands	will	provail.	For	example,	if	a	node	is	assigned	a	displacement	vector	in	the	first	fix	command,	a	force	vector	in	the
second	fix	command,	and	another	force	vector	in	the	third	fix	command,	the	force	vector	in	the	last	fix	command	will	be	imposed.	As
another	example,	if	an	atom	is	assigned	a	force	vector	in	the	fourth	fix	command,	and	a	displacement	vector	in	the	fifth	fix	command,
the	force/stress/energy	vector	of	that	atom	will	be	zeroed.	To	avoid	unintended	effects,	users	are	advised	to	carefully	check	if	the	same
nodes/atoms	are	involved	in	different	fix	commands.

Related	commands

There	cannot	be	fewer		fix		commands	than		fix_number	,	which	should	not	be	larger	than		new_group_number		+
	restart_group_number	.	When	there	are	more		fix		commands	in		cac.in		than		fix_number	,	those	appearing	later	will	be	ignored.

Note	that	all	groups	do	not	necessarily	have	corresponding		fix		command.	The	purpose	of	having	a	group	that	does	not	have	a
correpsonding		fix		command	is	to	calculate	certain	mechanical	properties,	e.g.,	energy,	force,	and	stress,	of	the	nodes/atoms	it
contains.

Related	files

	fix.f90	,		fix_displacement.f90	,	and		fix_force.f90	

Default

None.

fix

62

grain_dir

Syntax

grain_dir	direction	overlap

	direction		=	1	or	2	or	3

	overlap		=	real	number

Examples

grain_dir	1	0.1

grain_dir	2	0.2

Description

This	command	sets	the	grain	stack	direction	and	the	overlap	between	adjacent	grains	along	that	direction,	as	shown	in	the	figure	below:

	direction		can	be	1,	2,	or	3,	corresponding	to	the	x,	y,	or	z	directions,	respectively.

	overlap	,	in	units	of	the	component	of	the	lattice	periodicity	length	vector	 	along	the		direction	,	sets	the	overlap	distance

between	adjacent	grains	along	the		direction	,	as	shown	in	the	figure	above.	It	is	used	to	adjust	the	relative	position	along	a	certain
direction	between	adjacent	grains	to	find	the	energy	minimized	grain	boundary	structure.	If		overlap		is	a	large	positive	real	number,
some	atoms	from	adjacent	grains	may	be	too	close	to	each	other.	In	this	case,	one	may	use	the	cutoff	style	in	the	modify	command	to
delete	some	atoms	that	are	within	a	certain	distance	from	others.

l′0

grain_dir

63

Note	that	the		direction		is	also	the	subdomain	stack	direction	if		subdomain_number		>	1	even	when	there	is	only	one	grain,	i.e.,
	grain_number		=	1.	Since	there	is	no	overlap	between	adjacent	subdomains	within	the	same	grain,		overlap		becomes	irrelevant	when
	grain_number		=	1.

Related	commands

This	command	is	relevant	when		grain_number		>	1	or		subdomain_number		>	1.

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	grain	information.

Related	files

	box_init.f90		and		model_init.f90	

Default

grain_dir	3	0.

grain_dir

64

grain_mat

Syntax

grain_mat	{grain_id	x	i	j	k	y	i	j	k	z	i	j	k}

	i	,		j	,		k		=	real	number

Examples

grain_mat	{1	x	-1.	1.	-2.	y	1.	1.	0.	z	1.	-1.	-1.}

grain_mat	{1	x	1.	1.	0.	y	-1.	1.	2.	z	1.	-1.	1.}	{2	x	1.	1.	0.	y	-1.	1.	-2.	z	-1.	1.	1.}

Description

This	command	sets	the	crystallographic	orientations	in	each	grain,	along	the	x,	y,	and	z	directions,	respectively.	Note	that	the	curly
brackets		{		and		}		in	the	syntax/examples	are	to	separate	different	grains,	the	number	of	which	is		grain_number	;	all	brackets
should	not	be	included	in	preparing		cac.in	.

Any	two	sets	of	vector	must	be	normal	to	each	other,	i.e.,

x ⋅ y = 0

y ⋅ z = 0

x ⋅ z = 0

The	right	hand	rule	must	also	be	obeyed,	i.e.,

x× y ∥ z

y × z ∥ x

z× x ∥ y

The	user	will	get	an	error	message	followed	by	the	termination	of	the	program	if	any	of	these	requirements	is	not	satisfied.

The	maximum		grain_id		must	be	larger	than	or	equal	to		grain_number	.	All	information	related	to		grain_id		that	is	larger	than
	grain_number		is	discarded.

Related	commands

The	number	of	grain	is	specified	in	the	grain_num	command.

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	crystallographic	orientations
information.

Related	files
	grain.f90	

Default

grain_mat

65

grain_mat	1	x	1.	0.	0.	y	0.	1.	0.	z	0.	0.	1.

grain_mat

66

grain_move

Syntax

grain_move	{grain_id	move_x	move_y	move_z}

	grain_id		=	positive	integer

	move_x	,		move_y	,		move_z		=	real	number

Examples

grain_move	{1	0.	0.	0.}	{2	0.5	-0.301	0.001}

Description

This	command	sets	the	displacements	of	the	origin	of	each	grain	along	the	x,	y,	and	z	axis,	respectively.	When		move_x	,		move_y	,	and
	move_z		are	all	0.0,	the	next	grain's	lower	boundary	is	the	current	grain's	upper	boundary	along	the	grain	stack	direction.	Note	that	the
curly	brackets		{		and		}		in	the	syntax/examples	are	to	separate	different	grains,	the	number	of	which	is		grain_number	;	all	brackets
should	not	be	included	in	preparing		cac.in	.

The	maximum		grain_id		must	be	larger	than	or	equal	to		grain_number	.	All	information	related	to		grain_id		that	is	larger	than
	grain_number		is	discarded.

Related	commands

When	the	displacement	vector	is	along	the	grain	stack	direction,	result	by	this	command	may	be	equivalent	to	setting	the		overlap	
between	adjacent	grains.	Note	that	the	same		overlap		is	applied	between	all	adjacent	grains,	while	this	command	sets	the
displacement	vector	for	each	grain	independently.

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	grain	information.

Related	files
	box_init.f90	

Default

grain_move	1	0.	0.	0.

grain_move

67

grain_num

Syntax

grain_num	grain_number

	grain_number		=	positive	integer

Examples

grain_num	2

Description

This	command	sets	the	number	of	grains	in	the	simulation	cell.	When		grain_number		>	1,	grains	are	stacked	along	the	grain	stack
direction.	Each	grain	has	its	own	crystallographic	orientations,	origin	displacements,	and	number	of	subdomains.

Related	commands

In	commands	grain_mat,	grain_move,	subdomain,	unit_num,	and	unit_type,	all	information	related	to		grain_id		that	is	larger	than
	grain_number		in	this	command	will	be	discarded.

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	grain	information.

Related	files

	box_init.f90		and		grain.f90	

Default

grain_num	1

grain_num

68

group_num

Syntax

group_num	new_group_number	restart_group_number	fix_number	cal_number

	new_group_number	,		restart_group_number	,		fix_number	,		cal_number		=	non-negative	integer	(<=	40)

Examples

group_num	3	0	3	0

group_num	2	1	1	2

Description

This	command	sets	the	numbers	of	new	groups,	restart	groups,	fix,	and	calculations.	In	CAC,	a	group	is	a	collection	of
elements/nodes/atoms.	There	are	two	purposes	of	having	groups:	(i)	to	apply	a	displacement/force	to	certain	elements/nodes/atoms,	(ii)
to	calculate	some	mechanical	quantities,	e.g.,	energy,	force,	and	stress,	of	certain	elements/nodes/atoms.

The	new	groups	are	defined	in	the	group	command.	The	elements/nodes/atoms	contained	in	the	restart	groups,	named		group_*	,	are
read	from	the		group_in_*.id		files,	where		*		is	a	positive	integer	starting	from		new_group_number		+	1,	yet	their	displacement/force
information	is	set	in	the	fix	command.

The	total	number	of	groups,	i.e.,		new_group_number		+		restart_group_number	,	cannot	be	larger	than	40.	Files		group_in_*.id	
contain	information	of	the	restart	groups.	On	the	one	hand,	there	cannot	be	fewer		group_in_*.id		files	than		restart_group_number	;
on	the	other	hand,	any		group_in_*.id		file	with		*		>		new_group_number		+		restart_group_number		will	be	ignored.	When
	boolean_restart		=	f,		restart_group_number		becomes	0,	regardless	of	its	value	set	in	this	command.

	fix_number		should	not	be	larger	than		new_group_number		+		restart_group_number	;	neither	should		cal_number	.	Also,
	fix_number		+		cal_number		should	not	be	smaller	than		new_group_number		+		restart_group_number	.

Related	commands

The	new	groups	are	defined	in	the	group	command.	The	displacement/force	and	calculation	information	of	each	group	is	set	in	the	fix
and	cal	commands,	respectively.

Related	files

	group.f90	,		fix_displacement.f90	,		fix_force.f90	,		group_cal.f90	

Default

group_num	0	0	0	0

group_num

69

group_num

70

group

Syntax

group	group_name	style_cg	style_at	group_shape

						x	lower_b	upper_b	i	j	k

						y	lower_b	upper_b	i	j	k

						z	lower_b	upper_b	i	j	k

						boolean_in	group_axis

						group_centroid_x	group_centroid_y	group_centroid_z

						group_radius_large	group_radius_small

	group_name		=	a	string	(length	<=	30)

	style_cg		=	element	or	node	or	null

	style_at		=	atom	or	null

	group_shape		=	block	or	cylinder	or	cone	or	tube	or	sphere

	lower_b	,		upper_b		=	real	number	or	inf

	i	,		j	,		k		=	real	number

	boolean_in		=	t	or	f

		t	is	true

		f	is	false

	group_axis		=	1	or	2	or	3

	group_centroid_x	,		group_centroid_y	,		group_centroid_z		=	real	number

	group_radius_large	,		group_radius_small		=	positive	real	number

Examples

group	top_box	null	atom	block	x	inf	inf	1.	0.	0.	y	inf	inf	0.	1.	0.	z	14.4	inf	0.	0.	1.	t	3	20.	5.	0.	10.	10.

group	cylin	node	null	cylinder	x	inf	inf	1.	0.	0.	y	inf	inf	0.	1.	0.	z	14.4	inf	0.	0.	1.	f	3	20.	5.	0.	10.	10.

group	red_cone	element	atom	cone	x	inf	inf	1.	0.	0.	y	inf	inf	0.	1.	0.	z	14.4	inf	0.	0.	1.	t	3	20.	5.	0.	10.	5.

group	big_sphere	element	null	sphere	x	inf	inf	1.	0.	0.	y	inf	inf	0.	1.	0.	z	14.4	inf	0.	0.	1.	t	3	20.	5.	0.	10.	10.

Description

This	command	sets	new	groups,	the	number	of	which	is	provided	in	the	group_num	command.	The	elements/nodes/atoms	in	a	group,
either	a	new	group	or	a	restar	group,	can	be	moved	at	each	simulation	step,	deformed	with	the	simulation	cell	(when		boolean_def		in
both	fix	and	deform	commands	=	t),	or	not	moved/deformed.	The	syntax	is	similar	to	the	first	of	that	of	the	modify	command.

Different	new	groups	cannot	have	the	same		group_name	.	Also,	since	the	restart	groups	are	automatically	named		group_*	,	where		*	
is	a	positive	integer	starting	from		new_group_number		+	1,	the		group_name		in	this	command	cannot	have	any	of	those	names.

group

71

	style_cg		decides	whether	the	group	contains	elements	(element),	nodes	(node),	or	nothing	(null)	in	the	coarse-grained	domain;	the
differences	between	element	and	node	are	discussed	here.		style_at		decides	whether	the	group	contains	atoms	(atom)	or	nothing
(null)	in	the	atomistic	domain.

There	are	currently	five		group_shape	:	block,	cylinder,	cone,	tube,	and	sphere.

	lower_b		and		upper_b		are	the	lower	and	upper	boundaries	of	the		group_shape	,	respectively,	in	units	of	the	component	of	the

lattice	periodicity	length	vector	 	along	the	corresponding	direction.	When		lower_b		or		upper_b		=	inf,	the	corresponding	lower	or

upper	simulation	cell	boundaries	are	taken	as	the		group_shape		boundaries,	respectively.	Note	that	when		group_shape		=	cylinder	or
cone	or	tube,		lower_b		and		upper_b		are	the	lower	and	upper	plane	boundaries	normal	to	the	central	axis		group_axis		direction,
respectively.

	i	,		j	,	and		k		decide	the		group_shape		(≠	sphere)	boundary	plane	orientations	with	respect	to	the	simulation	cell,	similar	to	those
in	the	box_dir	command.

Note	that	these	five	options	(lower_b	,		upper_b	,		i	,		j	,	and		k)	are	irrelevant	when		group_shape		=	sphere,	and	when
	group_shape		=	cylinder	or	cone	or	tube	if	the	corresponding	direction	is	not		group_axis	.	Also,		group_axis		is	irrelevant	when
	group_shape		=	block	or	sphere.	However,	they	need	to	be	provided	regardless.

When		boolean_in		=	t,	elements/nodes/atoms	inside	the		group_shape		belong	to	the	group;	otherwise,	those	outside	do.

	group_centroid_x	,		group_centroid_y	,	and		group_centroid_z	,	in	units	of	the	component	of	the	lattice	periodicity	length	vector	

	and	with	respect	to	the	lower	boundaries	of	the	simulation	cell	along	the	corresponding	direction,	are	the	coordinates	of	the	center

of	the	base	plane	of	a	cylinder	or	cone	or	tube,	or	the	center	of	a	sphere.	When		group_shape		=	cylinder	or	cone	or	tube,	the
	group_centroid_*		that	corresponds	to	the		group_axis		direction	becomes	irrelevant.	For	example,	when		group_axis		=	2,
	group_centroid_y		can	take	any	real	number	without	affecting	the	results.

	group_radius_large		is	the	base	radius	of	a	cylinder,	the	large	base	radius	of	a	cone,	the	outer	base	radius	of	a	tube,	or	the	radius	of	a
sphere.		group_radius_small	,	the	small	base	radius	of	a	cone	or	the	inner	base	radius	of	a	tube,	is	irrelevant	for	other		group_shape	.

Both		group_radius_large		and		group_radius_small		are	in	units	of	the	maximum	lattice	periodicity	length	l .

Note	that	these	six	options	(group_axis	,		group_centroid_*	,	and		group_radius_*)	are	not	relevant	when		group_shape		=	block.
Yet,	they	need	to	be	provided	regardless.

Related	commands

There	cannot	be	fewer		group		commands	than		new_group_number	.	When	there	are	too	many		group		commands,	those	appearing
later	will	be	ignored.	The		group_name		in	the	cal	and	fix	commands	must	match	that	in	the	current	command.

This	command	becomes	irrelevant	when		new_group_number		=	0.

Related	files

	group.f90	,		fix_displacement.f90	,		fix_force.f90	,	and		group_cal.f90	

Default

None

l′0

l′0

max
′

group

72

group

73

lattice

Syntax

lattice	chemical_element	lattice_structure	lattice_constant

	chemical_element		=	a	string	(length	<=	30)

	lattice_structure		=	fcc	or	bcc

	lattice_constant		=	positive	real	number

Examples

lattice	Cu	fcc	3.615

lattice	Al	fcc	4.05

lattice	Fe	bcc	2.8553

Description

This	command	sets	the	lattice.

	lattice_constant		is	in	Angstrom.

Note	that	(i)	the	current	PyCAC	code	can	only	simulate	pure	metals	with	single	chemical	element,	(ii)		lattice_structure		must	be
either	fcc	or	bcc,	yielding	rhombohedral	elements	with	{111}	and	{110}	surfaces,	respectively.

Related	commands

The	atomic	mass	is	provided	in	the	mass	command.

	lattice_structure		becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	lattice	information.

Related	files

	box_init.f90		and		lattice.f90	

Default

None.

lattice

74

limit

Syntax

limit	atom_per_cell_number	atomic_neighbor_number

	atom_per_cell_number	,		atomic_neighbor_number		=	positive	integer

Examples

limit	100	100

limit	120	140

Description

This	command	sets	the	initial	number	of	atoms	per	cell	(atom_per_cell_number)	and	the	number	of	neighboring	atoms	per
atom/integration	point	(atomic_neighbor_number).	The	numbers	are	used	to	allocate	initial	arrays	for	atoms	in	cells	and	neighbors	of
atoms/integration	points.	If,	during	a	simulation,	arrays	larger	than	those	initially	allocated	become	necessary,	the	two	numbers	set	in
this	command	will	increase	by	20	to	enlarge	the	arrays,	until	even	larger	arrays	are	needed,	in	which	case	these	two	numbers	increase
by	20	again,	and	so	on.

Related	commands

The	initial	values	of	these	two	numbers	depend	on	the	cutoff	distance	r 	and	bin_size	of	the	interatomic	potential.

Related	files

	neighbor_init.f90	,		update_neighbor.f90	,		cell_neighbor_list.f90	,		update_cell_neighbor.f90	,	and		update_cell.f90	

Default

limit	100	100

c

limit

75

mass

Syntax

mass	atomic_mass

	atomic_mass		=	positive	real	number

Examples

mass	63.546

mass	26.9815

mass	55.845

Description

This	command	sets	the	atomic	mass	in	g/mol.	The	three	examples	are	for	Cu,	Al,	and	Fe,	respectively,	corresponding	to	those	in	the
lattice	command.	Note	the	current	PyCAC	code	can	only	simulate	pure	metals.

Related	commands

The	mass	matrix	type	in	the	finite	element	calculation	in	the	coarse-grained	domain	is	specified	in	the	element	command.

Related	files

	crystal.f90		and		mass_matrix.f90	

Default

None.

mass

76

minimize

Syntax

minimize	mini_style	max_iteration	tolerance

	mini_style		=	cg	or	sd	or	fire	or	qm

	max_iteration		=	positive	integer

	tolerance		=	positive	real	number

Examples

minimize	cg	1000	1d-5

minimize	fire	100	1d-6

Description

This	command	sets	the	style	and	two	parameters	for	the	energy	minimization	in	quasistatic	and	hybrid	CAC.

There	are	four		mini_style	:	congjugate	gradient	(cg),	steepest	descent	(sd),	fast	inertial	relaxation	engine	(fire),	and	quick	min	(qm).

Both	cg	and	sd	use	the	negative	gradient	of	internal	energy	as	the	initial	direction;	from	the	second	step,	however,	the	sd	style	uses	the
current	negative	gradient	while	the	cg	style	uses	the	negative	gradient	conjugated	to	the	current	potential	surface.	Once	the	direction	is
set,	the	inner	iterations	begin	in	which	a	line	search	is	conducted	to	determine	the	length	by	which	the	nodes/atoms	need	to	move	along
the	designated	direction	to	find	the	minimized	energy.	For	more	information	of	the	energy	minimization	with	these	two	styles,	read
chapter	3	of	Shuozhi	Xu's	Ph.D.	dissertation.

The	fire	style	is	based	on	Bitzek	et	al.,	2006	while	the	qm	style	is	based	on	quenched	dynamics	which	is	used	also	in	dynamic	CAC.
The	difference	is	that	only	one	quenched	dynamics	iteration	is	carried	out	at	each	simulation	step	in	dynamic	CAC	while	many
quenched	dynamics	iterations	are	performed	at	each	simulation	step	during	the	energy	minimization	until	the	internal	energy	converges
at	that	step.	For	the	fire	and	qm	styles,	the	inner	iteration	is	irrelevant.

The	energy	minimization	is	considered	to	converge	when	either	the	number	of	outer	iterations	reaches		max_iteraction		or	the	energy
variation	between	successive	outer	iterations	divided	by	the	energy	of	the	current	iteration	is	less	than		tolerance	.

Related	commands

This	command	is	relevant	only	when		simulation_style		=	statics	or	hybrid.

Related	files

	quasi_statics.f90	,		mini_init.f90	,		update_mini.f90	,		mini_energy.f90	,		hybrid.f90	,		conjugate_gradient.f90	,
	steepest_descent.f90	,		quick_mini.f90	,	and		fire.f90	

Default

minimize

77

https://en.wikipedia.org/wiki/Line_search
https://smartech.gatech.edu/handle/1853/56314
http://dx.doi.org/10.1103/PhysRevLett.97.170201

minimize	cg	1000	1d-6

minimize

78

modify_num

Syntax

modify_num	modify_number

	modify_number		=	non-negative	integer	(<=	19)

Examples

modify_num	2

Description

This	command	sets	the	number	of	modifications	that	are	made	to	the	elements/nodes/atoms	that	are	built	from	scratch,	i.e.,	when
	boolean_restart		=	f.

Related	commands

The	modification	style	is	set	by	the	modify	command.

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	modification	information.

Related	files
	model_modify.f90	

Default

modify_num	0

modify_num

79

modify

Syntax

modify	modify_name	modify_style	modify_shape

							x	lower_b	upper_b	i	j	k

							y	lower_b	upper_b	i	j	k

							z	lower_b	upper_b	i	j	k

							boolean_in	boolean_delete_filled	modify_axis

							modify_centroid_x	modify_centroid_y	modify_centroid_z

							modify_radius_large	modify_radius_small

modify	modify_name	modify_style	line_axis	plane_axis

							modify_centroid_x	modify_centroid_y	modify_centroid_z

							dis_angle	poisson_ratio

modify	modify_name	modify_style	depth	tolerance

modify	modify_name	modify_style	disp_x	disp_y	disp_z

	modify_name		=	a	string	(length	<=	30)

	modify_style		=	delete	or	cg2at	or	dislocation	or	cutoff	or	add_atom

	modify_shape		=	block	or	cylinder	or	cone	or	tube	or	sphere

	lower_b	,		upper_b		=	real	number	or	inf

	i	,		j	,		k		=	real	number

	boolean_in	,		boolean_delete_filled		=	t	or	f

		t	is	true

		f	is	false

	modify_axis	,		line_axis	,		plane_axis		=	1	or	2	or	3

	modify_centroid_x	,		modify_centroid_y	,		modify_centroid_z	,		dis_angle	,		poisson_ratio	,		add_x	,		add_y	,		add_z		=
real	number

	modify_radius_large	,		modify_radius_small	,		depth	,		tolerance		=	positive	real	number

Examples

modify	del_sth	delete	cylinder	x	0.	1.	0.94281	0.	-0.33333	y	inf	inf	0.	1.	0.	z	inf	inf	0.	0.	1.	t	t	3	50.	50.	1.	2.

	5.

modify	refine_sth	cg2at	block	x	inf	inf	1.	0.	0.	y	1.	12.	0.	0.94281	-0.33333	z	inf	inf	0.	0.	1.	t	f	1	20.	4.	5.	17.

	13.

modify	create_dis	dislocation	1	3	1.	20.	3.2	60.	0.36

modify	use_cutoff	cutoff	0.1	0.01

modify	add_some_atoms	add_atom	1.	3.	2.

Description

modify

80

This	command	sets	the	modifications	made	to	the	elements/nodes/atoms	that	are	built	from	scratch,	i.e.,	when		boolean_restart		=	f.
The	first	syntax	is	similar	to	that	of	the	group	command.

There	are	currently	five		modify_style	:	delete,	cg2at,	dislocation,	cutoff,	and	add_atom.	When		modify_style		=	delete	or	cg2at,	the
first	syntax	is	used;	when		modify_style		=	dislocation,	the	second	syntax	is	used;	when		modify_style		=	cutoff,	the	third	syntax	is
used;	otherwise,	the	fourth	syntax	is	used.

First	syntax	(modify_style		=	delete	or	cg2at)

The	first	syntax	removes	some	elements/atoms	(delete)	or	refines	some	elements	into	atomic	scale	(cg2at),	based	on	the	simulation	cell
built	from	scratch.

There	are	five		modify_shape	:	block,	cylinder,	cone,	tube,	and	sphere.

	lower_b		and		upper_b		are	the	lower	and	upper	boundaries	of	the		modify_shape	,	respectively,	in	units	of	the	component	of	the

lattice	periodicity	length	vector	 	along	the	corresponding	direction.	When		lower_b		or		upper_b		=	inf,	the	corresponding	lower	or

upper	simulation	cell	boundaries	are	taken	as	the		modify_shape		boundaries,	respectively.	Note	that	when		modify_shape		=	cylinder
or	cone	or	tube,		lower_b		and		upper_b		are	the	lower	and	upper	plane	boundaries	normal	to	the	central	axis		modify_axis		direction,
respectively.

	i	,		j	,	and		k		decide	the		modify_shape		(≠	sphere)	boundary	plane	orientations	with	respect	to	the	simulation	cell,	similar	to	those
in	the	box_dir	command.

Note	that	these	five	options	(lower_b	,		upper_b	,		i	,		j	,	and		k)	are	irrelevant	when		modify_shape		=	sphere,	and	when
	modify_shape		=	cylinder	or	cone	or	tube	if	the	corresponding	direction	is	not		modify_axis	.	Also,		modify_axis		is	irrelevant	when
	modify_shape		=	block	or	sphere.	However,	they	need	to	be	provided	regardless.

When		boolean_in		=	t,	elements	with	any	of	their	parts	(in	the	coarse-grained	domain)	and	atoms	(in	the	atomistic	domain)	inside	the
	modify_shape		are	deleted	(delete)	or	refined	to	atomic	scale	(cg2at);	otherwise,	those	outside	are.	In	the	coarse-grained	domain,	an
element	might	have	some	part	of	it	inside	and	the	remaining	part	outside		modify_shape	;	for	this	element,	with	delete,	the	region	that
is	left	behind	due	to	the	deletion	may	not	have	the	shape	specified	by		modify_shape	.	In	this	case,	if		boolean_delete_filled		=	t,
atoms	(that	are	linearly	interpolated	from	the	original	element)	will	be	filled	in	to	maintain	the		modify_shape	.	E.g.,	if		boolean_in		=
t,	the	interpolated	atoms	of	the	deleted	elements	that	are	outside		modify_shape		are	filled	in;	otherwise,	those	inside	are,	as	shown	in
the	figure	below.	Note	that		boolean_delete_filled		is	irrelevant	when		modify_style		=	cg2at.

l′0

modify

81

http://dx.doi.org/10.1016/j.ijsolstr.2016.03.030

Also	note	that	while	delete	applies	to	both	atomistic	and	coarse-grained	domains,	cg2at	applied	to	the	coarse-grained	domain	only.
Different	from	the	group	command	in	which	the	user	should	pay	attention	to	the	difference	between	element	and	node,	a	modification
follows	one	simple	rule	in	the	coarse-grained	domain:	an	element	and	all	its	nodes	are	selected	if	any	interpolated	atom	of	this	element
is	inside	(if		boolean_in		=	t)	or	outside	(if		boolean_in		=	f)		modify_shape	.

modify

82

	modify_centroid_x	,		modify_centroid_y	,	and		modify_centroid_z	,	in	units	of	the	component	of	the	lattice	periodicity	length

vector	 	and	with	respect	to	the	lower	boundaries	of	the	simulation	cell	along	the	corresponding	direction,	are	the	coordinates	of	the

center	of	the	base	plane	of	a	cylinder	or	cone	or	tube,	or	the	center	of	a	sphere.	When		modify_shape		=	cylinder	or	cone	or	tube,	the
	modify_centroid_*		that	corresponds	to	the		modify_axis		becomes	irrelevant.	For	example,	when		modify_axis		=	3,
	modify_centroid_z		can	take	any	real	number	without	affecting	the	results.

	modify_radius_large		is	the	base	radius	of	a	cylinder,	the	large	base	radius	of	a	cone,	the	outer	base	radius	of	a	tube,	or	the	radius	of	a
sphere.		modify_radius_small	,	the	small	base	radius	of	a	cone	or	the	inner	base	radius	of	a	tube,	is	irrelevant	for	other

	modify_shape	.	Both		modify_radius_large		and		modify_radius_small		are	in	units	of	the	maximum	lattice	periodicity	length	l .

Note	that	these	six	options	(modify_axis	,		modify_centroid_*	,	and		modify_radius_*)	are	not	relevant	when		modify_shape		=
block.	Yet,	they	need	to	be	provided	regardless.

Second	syntax	(modify_style		=	dislocation)

The	second	syntax	builds	a	full	dislocation	into	the	simulation	cell,	with	nodes/atoms	displaced	following	the	isotropic	displacement

field.	In	FCC	and	BCC	lattices,	a	full	dislocation	has	a	Burgers	vector	magnitude	of	(/2)a 	and	(/2)a ,	respectively,	where	a 	is

the		lattice_constant	.	Multiple		modify		commands	with		modify_style		=	dislocation	can	be	employed	to	introduce	multiple
dislocations.

	line_axis		and		plane_axis		are	the	dislocation	line	axis	and	the	plane	normal	axis,	respectively.	They	cannot	be	the	same.

	modify_centroid_x	,		modify_centroid_y	,	and		modify_centroid_z	,	in	units	of	the	component	of	the	lattice	periodicity	length

vector	 	and	with	respect	to	the	lower	boundaries	of	the	simulation	cell	along	the	corresponding	direction,	are	the	coordinates	of	the

origin	with	respect	to	which	the	displacement	field	is	built.	For	example,	if	one	wants	to	build	a	dislocation	passing	through	the
centroid	of	the	simulation	cell,	these	three	quantities	should	be	at	the	centroid.	Note	that	in	the	coarse-grained	and	atomistic	domains,
the	slip	plane,	which	contains	the	dislocation	along		line_axis		and	has	a	normal	direction		plane_axis	,	should	be	located	between
two	adjacent	elements	and	two	atomic	layers,	respectively.

	dis_angle		and		poisson_ratio		are	the	dislcoation	character	angle	(in	degrees)	and	the	isotropic	Poisson's	ratio	of	the	material,
respectively.

Third	syntax	(modify_style		=	cutoff)

The	third	syntax	deletes	one	atom	from	a	pair	of	atoms	(either	real	atoms	in	the	atomistic	domain	or	interpolated	atoms	in	the	coarse-
grained	domain)	when	they	are	too	close,	at	the	grain	boundary.	The	situation	that	some	atoms	are	too	close	to	each	other	is	usually	a
result	of	the		overlap		or	grain	origin	displacements.	Among	all		modify		commands,	there	should	be	no	more	than	one	with
	modify_style		=	cutoff.

	depth		and		tolerance	,	in	units	of	the	component	of	the	lattice	periodicity	length	vector	 	along	the	grain	stack	direction,	specify

the	size	of	the	target	region	and	the	cutoff	distance,	respectively,	as	shown	in	the	figure	below.	In	most	cases,		tolerance		should	not
be	larger	than	or	equal	to	the	first	nearest	neighbor	distance	in	a	perfect	lattice.

l′0

max
′

√2 0 √3 0 0

l′0

l′0

modify

83

At	each	grain	boundary,	a	check	is	first	conducted,	within	the	region	set	by		depth		along	the	grain	stack	direction,	on	both	the	real
atoms	in	the	atomistic	domain	or	the	interpolated	atoms	in	the	coarse-grained	doain.	In	the	figure	above,	(i)	all	atoms	in	the	red	shaded
region	(grain	I)	will	be	run	against	those	in	the	left	green	shaded	region	(grain	II),	(ii)	all	atoms	in	the	right	green	shaded	region	(grain
II)	will	be	run	against	those	in	the	blue	shaded	region	(grain	III).	Within	a	pair,	if	both	are	real	atoms,	the	one	associated	with	a	smaller
	grain_id		is	deleted;	if	one	is	a	real	atom	and	the	other	is	an	interpolated	atom,	the	real	atom	is	deleted;	if	both	are	interpolated	atoms,
the	user	will	get	an	error	message	because	it	is	impossible	to	delete	a	single	interpolated	atom	from	an	element,	which	would	violate
the	hyperelastic	body	assumption	of	an	element.

Fourth	syntax	(modify_style		=	add_atom)

The	fourth	syntax	adds	additional	atoms	to	the	simulation	cell	built	from	scratch.	It	cannot	add	additional	elements.	The	information	of
the	atoms	to	be	added	is	read	from	LAMMPS	data	files		lmp_*.dat	,	where		*		is	the	id	of	the	current	modify	command	in		cac.in	.
For	example,	if	the	commands	look	like	this:

modify	del_sth	delete	cylinder	x	0.	1.	0.94281	0.	-0.33333	y	inf	inf	0.	1.	0.	z	inf	inf	0.	0.	1.	t	t	3	50.	50.	1.	2.

	5.

modify	add_first	add_atom	1.	3.	2.

modify	create_dis	dislocation	1	3	1.	20.	3.2	60.	0.36

modify	add_second	add_atom	-1.	4.	2.

then	two	files,	naming,		lmp_2.dat		and		lmp_4.dat		should	be	provided.

	disp_x	,		disp_y	,	and		disp_z	,	in	units	of	the	component	of	the	lattice	periodicity	length	vector	 	and	with	respect	to	the	lower

boundaries	of	the	simulation	cell	along	the	corresponding	direction,	are	the	displacement	of	the	added	atoms	with	respect	to	their
original	positions	in		lmp_*.dat	.	If		disp_x	,		disp_y	,	and		disp_z		are	all	zero,	the	atoms	are	added	as	is.

This		modify_style		can	be	useful	in	constructing	models	containing	grain	boundaries	(GBs).	For	example,	the	GB	region	(which	may
not	have	energy	minimized	GB	structures)	of	a	bicrystal	model	may	be	deleted	first,	before	the	energy	minimized	GB	structures
presented	in	LAMMPS	data	files	are	added	to	the	model.	This	can	be	realized	by	first	using	a	modify	command	with		modify_style		=
delete,	followed	by	another	modify	command	with		modify_style		=	add_atom.

l′0

modify

84

http://lammps.sandia.gov/doc/2001/data_format.html
https://materialsdata.nist.gov/handle/11256/358

Related	commands

There	cannot	be	fewer		modify		commands	than		modify_number	.	When	there	are	too	many		modify		commands	in		cac.in	,	those
appearing	later	will	be	ignored.

This	command	becomes	irrelevant	when		boolean_restart		=	t	or		modify_number		=	0,	in	which	case	there	is	no	need	for	the
modification	information.

Related	files

	model_modify.f90	,		model_modify_interpo.f90	,		model_add_atom.f90	,		model_cutoff.f90	,		model_cutoff_bd.f90	,
	model_dislocation.f90	,		model_cg2at.f90	,		model_delete.f90	,	and		model_rearrange.f90	.

Default

None.

Acknowledgements

Rigelesaiyin	Ji	and	Jaber	R.	Mianroodi	are	acknowledged	for	helpful	discussions	in	implementing	the	second	syntax.

modify

85

https://www.aere.iastate.edu/lmxiong/people-2/
https://scholar.google.com/citations?user=m18d-jwAAAAJ&hl=en

neighbor

Syntax

neighbor	bin_size	neighbor_freq

	bin_size		=	non-negative	real	number

	neighbor_freq		=	positive	integer

Examples

neighbor	1.	100

neighbor	2.	200

Description

This	command	sets	parameters	for	updating	the	neighbor	list.	In	CAC	simulatoins,	each	atom	in	the	atomistic	domain	and	each
integration	point	in	the	coarse-grained	domain	maintain	neighbor	lists.	Note	that	the	non-integration	point	interpolated	atoms	in	the
coarse-grained	domain	do	not	maintain	neighbor	lists	because	their	force/energy	etc.	are	not	calculated.

	bin_size	,	in	Angstrom,	sets	the	length	of	the	bin,	which	adds	to	the	cutoff	distance	r 	of	the	interatomic	potential.	All	atoms	within	

r 	+		bin_size		from	an	atom/integration	point	are	the	neighbors	of	this	atom.	Note	that	each	edge	length	of	the	processor	domain

cannot	be	smaller	than	2⋅	(r 	+		bin_size).

	neighbor_freq		is	the	frequency	with	which	a	check	of	whether	the	neighbor	list	should	be	updated	is	conducted.	The	neighbor	lists
of	all	atoms/integration	points	are	updated	if,	with	respect	to	the	nodal/atomic	positions	recorded	at	the	last	check,	any	node	or	atom
has	a	displacement	larger	than	half	the		bin_size	.

Related	commands

The	initial	number	of	neighboring	atoms	per	atom/integration	point	is	set	in	the	limit	command.

Related	files

	neighbor_init.f90		and		update_neighbor.f90	

Default

neighbor	1.	200

c

c

c

neighbor

86

neighbor

87

potential

Syntax

potential	potential_type

	potential_type		=	lj	or	eam

		lj	is	the	Lennard-Johns	potential

		eam	is	the	embedded-atom	method	potential

Examples

potential	lj

potential	eam	

Description

This	command	sets	the	interatomic	potentials.	Currently,	a	CAC	simulation	accepts	two		potential_style	:	Lennard-Johns	(lj)	and
embedded-atom	method	(eam)	potentials.	One	file	for	the	lj	potential	and	four	files	for	the	eam	potential,	respectively,	should	be
provided	as	input.

Related	commands

None.

Related	files

	potential.f90	,		eam_tab.f90	,		deriv_tab.f90	,	and		lj_para.f90	.

Default

None.

potential

88

refine

Syntax

refine	refine_style	refine_group_number	unitype

	refine_style		=	all	or	group

	refine_group_number	,		unitype		=	positive	integer

Examples

refine	all	1	6

refine	group	1	12

refine	group	2	6

Description

This	command	sets	refinement	styles	when		boolean_restart_refine		=	t.

There	are	two		refine_style	:	all	or	group,	which	refines	all	or	some	elements	into	atomic	scale,	respectively.

When		refine_style		=	all,	all	elements	in	the	coarse-grained	domain	are	refined	into	atomic	scale.	This	is	used	when,	e.g.,	the	user
wants	to	perform	an	equivalent	full	atomistic	simulation	using	the	PyCAC	code.	Currently,	this	option	is	correctly	trigered	only	when
all	elements	have	the	same	size,	i.e.,	the	same		unitype		had	been	used	in	all	coarse-grained	subdomains	based	on	which	the
	cac_in.restart		file	was	created.	In	the	first	example,	the		cac_in.restart		file	refers	to	a	simulation	cell	with	elements	each	of

which	has	(6 + 1) = 343	atoms.

When		refine_style		=	group,	selected	elements	in	the		group_in_*.id		files	(where		*		is	a	positive	integer	starting	from	1)	in	the
coarse-grained	domain	are	refined	into	atomic	scale.	The	number	of	groups	to	be	refined	is		refine_group_number	.	As	a	result,	the
number	of		group_in_*.id		files	should	be	larger	than	or	equal	to		refine_group_number	.

Note	that		refine_group_number		is	irrevelant	when		refine_style		=	all,	and		unitype		is	irrevelant	when		refine_style		=	group.

Related	commands

This	command	becomes	irrelevant	when		boolean_restart_refine		=	f,	in	which	case	there	is	no	need	for	the	refinement	information.

Related	files
	refine_init.f90	

Default

None.

3

refine

89

http://dx.doi.org/10.1016/j.ijsolstr.2016.03.030

refine

90

restart

Syntax

restart	boolean_restart	boolean_restart_refine

	boolean_restart	,		boolean_restart_refine		=	t	or	f

		t	is	true

		f	is	false

Examples

restart	f	f

restart	t	f

restart	t	t

Description

This	command	sets	the	restart	styles.

When		boolean_restart		=	t,	the	code	reads	the	elements/nodes/atoms	information	from	the		cac_in.restart		file;	otherwise,	the
simulation	cell	is	built	from	scratch	and		boolean_restart_refine		becomes	f	regardless	of	it	value	set	in	this	command.

When		boolean_restart_refine		=	t,	all	or	some	elements	in	the	coarse-grained	domain	are	refined	to	atomic	scale	by	linear
interpolation	from	the	nodal	positions.	Which	elements	to	be	refined	depends	on	the		refine_style	.

Related	commands

When		boolean_restart_refine		=	f,	the	refine	command	becomes	irrelevant,	in	which	case	there	is	no	need	for	the	refinement
information.

Related	files

	read_restart.f90		and		write_restart.f90	

Default

restart	f	f

restart

91

http://dx.doi.org/10.1016/j.ijsolstr.2016.03.030

run

Syntax

run	total_step	time_step

	total_step		=	non-negative	integer

	time_step		=	positive	real	number

Examples

run	10000	0.002

Description

This	command	sets	the	total	step	and	time	step	of	a	CAC	simulation.

	total_step		is	the	total	simulation	step	of	dynamic/hybrid	CAC	simulations	or	the	total	loading	increment	of	quasistatic	CAC
simulations.

	time_step	,	in	ps,	is	the	time	step	in	dynamic	CAC	simulations,	dynamic	part	in	hybrid	CAC	simulations,	and	some	quasistatic
simulations	when		mini_style		=	fire	or	qm.	It	is	also	used	in	the	fix	command	when		assign_style		=	disp.

Related	commands

	time_step		becomes	irrelevant	when		simulation_style		=	statics	with		mini_style		=	cg	or	sd.

When		boolean_restart		=	t,	the		total_step		is	added	to	the	time	stamp	read	from	the		cac_in.restart		file,	instead	of	overriding
it.

Related	files

	dynamics_init.f90	,		dynamics.f90	,	and		hybrid.f90	.

Default

run	0	0.002

run

92

simulator

Syntax

simulator	simulation_style

	simulation_style		=	dynamics	or	statics	or	hybrid

Examples

simulator	dynamics

simulator	hybrid

Description

This	command	sets	the		simulation_style		in	CAC	simulations:	dynamics	(dynamic	CAC),	statics	(quasistatic	CAC),	or	hybrid
(dynamic	CAC	with	periodic	energy	minimization).	The	former	two		simulation_style		have	different	schemes.

Related	commands

More	style	information	for	a	CAC	simulation	is	set	in	the	dynamics	and	minimize	commands.

Related	files

	dynamics.f90	,		quasi_statics.f90	,	and		hybrid.f90	

Default

simulator	dynamics

simulator

93

subdomain

Syntax

subdomain	{grain_id	subdomain_number}

	grain_id	,		subdomain_number		=	positve	integer

Examples

subdomain	{1	1}

subdomain	{1	2}	{2	3}

subdomain	{1	1	2	1	3	1}

Description

This	command	sets	the	number	of	subdomains	in	each	grain.	Note	that	the	curly	brackets		{		and		}		in	the	syntax/examples	are	to
separate	different	grains,	the	number	of	which	is		grain_number	;	all	brackets	should	not	be	included	in	preparing		cac.in	.

In	CAC,	a	unit	is	either	the	primitive	unit	cell	of	the	lattice	(for	the	atomistic	domain)	or	a	finite	element	(for	the	coarse-grained
domain).	Finite	elements	of	different	sizes	are	different	types	of	unit.	In	a	CAC	simulation	cell,	each	spatial	region	consisting	of	the
same	type	of	unit	is	a	subdomain,	as	illustrated	in	the	figure	below:

Note	that	in	this	figure,	which	is	Fig.	4	of	Xu	et	al.,	2018,	the	atoms	in	subdomain	i/grain	I	and	subdomain	i/grain	III	are	employed	to
fill	in	the	otherwise	jagged	interstices,	because	either		boolean_y		=	f	or		y		=	p.

The	size	of	each	subdomain	and	the	unit	type	in	each	subdomain	in	each	grain	is	specified	in	the	unit_num	and	unit_type	commands,
respectively.	The	grains	and	subdomains	are	stacked	along	a	prescribed		direction	.	The	three	examples	above	correspond	to	the	three
examples	in	the	unit_num	and	unit_type	commands:

In	the	first	example,	there	is	one	grain	designated	by	the	first	1,	which	has	one	subdomain	designated	by	the	second	1.
In	the	second	example,	there	are	two	grains:	the	first	grain	has	two	subdomains	designated	by	the	first	2,	the	second	grain	has
three	subdomains	designated	by	3.
In	the	third	example,	there	are	three	grains,	each	of	which	has	one	subdomain,	designated	by	the	second	1,	the	third	1,	and	the
fourth	1,	respectively.

subdomain

94

http://dx.doi.org/10.1557/jmr.2018.8

The	maximum		grain_id		must	be	larger	than	or	equal	to		grain_number	.	All	information	related	to		grain_id		that	is	larger	than
	grain_number		is	discarded.

Related	commands

In	the	unit_num	and	unit_type	commands,	the	maximum		subdomain_id		in	each	grain	must	equal	the	corresponding
	subdomain_number	.

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	subdomain	information.

Related	files
	box_init.f90	

Default

subdomain	1	1

subdomain

95

temperature

Syntax

temperature	boolean	temp

	boolean		=	t	or	f

		t	is	true

		f	is	false

	temp		=	non-negative	real	number

Examples

temperature	t	10.

temperature	t	300.

Description

This	command	sets	whether	the	temperature	is	kept	a	constant	in	the	system	(boolean)	for	the	dynamic	and	hybrid	CAC	simulations;
and	if	yes,	what	is	the	desired	temperature	in	K	(temp).

A	constant	zero	temperature	is	maintained	in	the	system	only	when		dyn_style		=	ld	or	qd,	i.e.,	Langevin	dynamics	or	quenched
dynamics.	Note	that	in	this	case,	the	equation	of	motion	for	the	Langevin	dynamics	reduces	to	that	for	the	damped	dynamics.

A	constant	finite	temperature	is	maintained	in	the	system	only	when		dyn_style		=	ld,	i.e.,	Langevin	dynamics.	The	user	will	get	a
warning	message	if		temp		is	finite	and	if		dyn_style		=	qd.

In	quasi-static	simulations,		boolean		must	be	f	and	the	temperature,	which	is	effectively	0	K,	is	irrelevant.

Related	commands

If		boolean		=	t	and		dyn_style		=	vv,	the	user	will	get	a	warning	message	and	the	temperature		temp		becomes	irrelevant,	because	the
Velocity	Verlet	option	cannot	maintain	a	constant	temperature.

Related	files

	thermostat.f90	,		langevin_dynamics.f90	,	and		langevin_vel.f90	

Default

temperature	t	10.

temperature

96

temperature

97

unit_num

Syntax

unit_num	{grain_id	[subdomain_id	x	unit_num_x	y	unit_num_y	z	unit_num_z]}

	grain_id	,		subdomoain_id		=	positive	integer

	unit_num_x	,		unit_num_y	,		unit_num_z		=	positive	integer

Examples

unit_num	{1	[1	x	2	y	3	z	4]}

unit_num	{1	[1	x	8	y	20	z	12]	[2	x	40	y	2	z	60]}	{2	[1	x	40	y	1	z	60]	[2	x	8	y	25	z	12]	[3	x	6	y	7	z	10]}

unit_num	{1	[1	x	2	y	3	z	4]}	{2	[1	x	6	y	1	z	2]}	{3	[1	x	10	y	2	z	3]}

Description

This	command	sets	the	size	of	each	subdomain	along	three	directions	in	each	grain.	The		unit_num_x	,		unit_num_y	,	and
	unit_num_z		are	in	units	of	the		x	,		y	,	and		z		length	of	the	projection	of	the	unit	(primitive	unit	cell	in	the	atomistic	domain	or	the
finite	element	in	the	coarse-grained	domain)	on	the		yz	,		xz	,	and		xy		planes,	respectively.

Similar	to	the	unit_type	command,	this	command	consists	of	two	loops.	The	outer	loop,	illustrated	by		{}	,	is	based	on	grain;	the	inner
loop,	illustrated	by		[]	,	is	based	on	subdomain.	Note	that	the	curly	brackets		{		and		}		as	well	as	the	square	brackets		[and]		in
the	syntax/examples	are	to	separate	different	grains	and	subdomains,	the	number	of	which	are		grain_number		and
	subdomain_number	,	respectively;	all	brackets	should	not	be	included	in	preparing		cac.in	.

When		grain_number		>	1	and/or		subdomain_number		>	1,	the	size	of	each	subdomain	set	directly	by	this	command	is	most	likely	not
the	same,	which	may	be	problematic	in	some	cases,	e.g.,	in	a	bicrystal,	as	shown	in	Fig.	(a)	below,	in	which	the	subdomain	i/grain	I	has
a	larger	z	length	than	the	other	subdomains.	Since	the	grain	stack	direction	is	y,	the	size	of	all	other	subdomains	along	the	x	and	z
directions	will	be	increased	to	match	that	of	the	subdomain	i/grain	I,	respectively,	as	shown	in	Fig.	(b)	below.

unit_num

98

The	three	examples	above	correspond	to	the	three	examples	in	the	subdomain	command.

The	maximum		grain_id		must	be	larger	than	or	equal	to		grain_number	.	All	information	related	to		grain_id		that	is	larger	than
	grain_number		is	discarded.	Within	each	grain,	the	maximum		subdomain_id		must	equal	the	corresponding	subdomain_number.

Related	commands

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	subdomain	information.

Related	files

	box_init.f90		and		model_init.f90	

Default

None.

unit_num

99

unit_num

100

unit_type

Syntax

unit_type	{grain_id	[subdomain_id	unitype]}

	grain_id	,		subdomain_id		=	positive	integer

	unitype		=	1	or	positive	even	integer	(>=	2	if		intpo_depth		=	1,	>=	4	if		intpo_depth		=	2)

Examples

unit_type	{1	[1	12]}

unit_type	{1	[1	1]	[2	8]}	{2	[1	6]	[2	16]	[3	10]}

unit_type	{1	[1	14]}	{2	[1	1]}	{3	[1	6]}

Description

The	command	sets	the	unit	type	in	each	subdomain	in	each	grain.

Similar	to	the	unit_num	command,	this	command	consists	of	two	loops.	The	outer	loop,	illustrated	by		{}	,	is	based	on	grain;	the	inner
loop,	illustrated	by		[]	,	is	based	on	subdomain.	Note	that	the	curly	brackets		{		and		}		as	well	as	the	square	brackets		[and]		in
the	syntax/examples	are	to	separate	different	grains	and	subdomains,	the	number	of	which	are		grain_number		and
	subdomain_number	,	respectively;	all	brackets	should	not	be	included	in	preparing		cac.in	.

The	number	of	atoms	per	unit	is	(unitype + 1) ,	where		unitype		must	be	either	1	(atomistic	domain)	or	an	even	integer	that	is	no	less

than	2	if		intpo_depth		=	1	and	no	less	than	4	if		intpo_depth		=	2	(coarse-grained	domain):	in	the	latter	case,	(i)	it	must	be	even
because	of	the	first	order	Gaussian	quadrature	employed	to	solve	the	governing	equations,	(ii)	it	must	be	>=	2	or	>=4	because	of	the
first	nearest	neighbor	(1NN)	element	and	second	nearest	neighbor	(2NN)	element	have	27	and	125	integration	points,	respectively	(so
there	cannot	be	fewer	than	27	and	125	atoms	in	one	element,	respectively).	For	more	information	of	the	1NN/2NN	element	and	the
Gaussian	quadrature	implementation,	read	Appendices	A	and	B	of	Xu	et	al.,	2015.

The	three	examples	above	correspond	to	the	three	examples	in	the	subdomain	command:

In	the	first	example,	there	is	only	one	grain,	designated	by	the	first	1,	having	only	one	subdomain,	designated	by	the	second	1,
with	the		unitype		=	12.
In	the	second	example,	there	are	two	grains,	designated	by	the	first	1	and	the	second	2,	respectively.	The	first	grain	has	two

subdomains:	the	first	is	atomistics	because		unitype		=	1;	the	second	contains	elements	each	of	which	has	(8 + 1) = 729	atoms.

The	second	grain	has	three	subdomains:	the	first	contains	elements	each	of	which	has	(6 + 1) = 343	atoms;	the	second	contains

elements	each	of	which	has	(16 + 1) = 4913	atoms;	the	third	contains	elements	each	of	which	has	(10 + 1) = 1331	atoms.

In	the	third	example,	there	are	three	grains,	each	of	which	contains	one	unit	type.	Note	that	the	second	grain	is	atomistics	because
	unitype		=	1.

The	maximum		grain_id		must	be	larger	than	or	equal	to		grain_number	.	All	information	related	to		grain_id		that	is	larger	than
	grain_number		is	discarded.	Within	each	grain,	the	maximum		subdomain_id		must	equal	the	corresponding	subdomain_number.

3

3

3

3 3

unit_type

101

http://dx.doi.org/10.1016/j.ijplas.2015.05.007

Related	commands

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	subdomain	information.

Related	files
	model_init.f90	

Default

None.

unit_type

102

zigzag

Syntax

zigzag	boolean_x	boolean_y	boolean_z

	boolean_x	,		boolean_y	,		boolean_z		=	t	or	f

		t	is	true

		f	is	false

Examples

zigzag	t	f	f

zigzag	t	t	t

Description

This	command	decides	whether	the	simulation	cell	boundaries	are	left	zigzagged	along	the	x,	y,	and	z	directions,	respectively.

Due	to	the	rhombohedral	shape	of	the	finite	elements	in	the	coarse-grained	domain,	the	simulation	cell	mostly	likely	has	zigzagged
boundaries,	as	shown	in	Fig.	C27(a)	of	Xu	et	al.,	2015.	On	the	other	hand,	flat	boundaries	are	sometimes	desirable	to	enforce	the
periodic	boundary	conditions	or	to	lower	the	aphysical	stress	concentrations	at	the	boundaries.

If	one	of	the	three	booleans	in	this	command	is	f,	atoms	will	be	filled	in	the	corresponding	jagged	interstices,	resulting	in	flat
boundaries	normal	to	the	corresponding	direction,	unless	the	boundaries	were	already	flat	with	rhomboheral	elements,	e.g.,	parallel	to	a
{111}	plane	in	an	FCC	lattice	or	to	a	{110}	plane	in	a	BCC	lattice.	Examples	of	the	filled	atoms	include	Fig.	C27(b)	of	Xu	et	al.,	2015
and	the	figure	for	the	subdomain	command	in	which	the	atoms	are	filled	in	at	the	leftmost	and	rightmost	simulation	cell	boundaries.	If
a	certain	boolean	is	t,	no	atoms	will	be	filled	in	at	the	boundaries.

Related	commands

When	a	boundary	is	periodic,	the	corresponding	zigzag	boolean	becomes	f,	regardless	of	what	is	set	in	this	command,	because	the
periodic	boundaries	must	be	flat	in	CAC	simulations.

This	command	becomes	irrelevant	when		boolean_restart		=	t,	in	which	case	there	is	no	need	for	the	boundary	shape	information.

Related	files
	model_init.f90	

Default

zigzag	t	t	t

zigzag

103

http://dx.doi.org/10.1016/j.ijplas.2015.05.007
http://dx.doi.org/10.1016/j.ijplas.2015.05.007

zigzag

104

Post-processing
A	CAC	simulation	outputs	a	lot	of	files,	most	of	which	are		dump.*		and		*.vtk		files	that	can	be	visualized	and	analyzed	using
OVITO,	ParaView,	and	a	data	analyzer,	respectively.	As	of	June	2017,	the	latest	versions	of	the	first	two	software,	OVITO	2.8.2	and
ParaView	5.4,	are	compatiable	with	the	CAC	results.

The	stress-strain	curve	and	the	simulation	step-temperature	curve	can	be	plotted	by	processing	the		stress_strain		and		temperature	
files,	respectively,	using	common	graphing	software	such	as	MATLAB,	Octave,	Origin,	SigmaPlot,	and	gnuplot.

Post-processing

105

http://www.ovito.org/index.php/download
https://www.paraview.org/download
https://www.mathworks.com/products/matlab.html
https://www.gnu.org/software/octave
http://www.originlab.com/
https://systatsoftware.com/products/sigmaplot
http://www.gnuplot.info

OVITO

A	series	of		dump.#		files,	containing	the	positions	of	the	atoms	(both	the	real	atoms	in	the	atomistic	domain	and	the	interpolated	atoms
in	the	coarse-grained	domain),	are	created	by	the	output	component	of	the	Python	scripting	interface,	with	a	frequency	of
	output_freq	.	A		dump.lammps		file	which,	in	addition	to	the	nodal/atomic	positions,	may	also	contain	the	nodal/atomic	velocities
information	if		simulation_style		=	dynamics	or	hybrid,	is	also	created	in	the	beginning	of	the	simulation.	All	these		dump.*		files	can
be	read	and	analyzed	by	OVITO	---	The	Open	Visualization	Tool,	which	provides	a	variety	of	analyses.

A	common	usage	of	OVITO	to	process	the		dump.*		files	is	to	visualize	the	dislocations.	First,	import	any		dump.#		file	into	OVITO.
Then	load	the	Dislocation	analysis	(DXA)	modifier	and	deselect	the	Particles	in	Display.	This	approach	applies	to	both	the	FCC	and
BCC	metals.

To	visualize	lattice	defects	other	than	dislocations,	e.g.,	stacking	faults,	twin	boundaries,	other	modifiers.	For	FCC	metals,	the
Common	neighbor	analysis	modifier	can	be	loaded,	followed	by	that	selected	FCC	particles	are	deleted	to	visualize	the	defects.	For
BCC	metals,	the	Centrosymmetry	parameter	modifier	can	be	loaded,	then	atoms	with	a	large	Centrosymmetry	parameter	are	selected
and	deleted	to	visualize	the	defects.

OVITO

106

http://www.ovito.org
https://ovito.org/manual/usage.import.html
https://ovito.org/manual/particles.modifiers.dislocation_analysis.html
https://ovito.org/manual/display_objects.html
https://ovito.org/manual/particles.modifiers.html
https://ovito.org/manual/particles.modifiers.common_neighbor_analysis.html
https://ovito.org/manual/particles.modifiers.select_particle_type.html
https://ovito.org/manual/particles.modifiers.delete_selected_particles.html
https://ovito.org/manual/particles.modifiers.centrosymmetry.html
https://ovito.org/manual/particles.modifiers.expression_select.html
https://ovito.org/manual/particles.modifiers.delete_selected_particles.html

ParaView

In	a	CAC	simulation,	a	series	of		cac_cg_#.vtk		and		cac_atom_#.vtk		files,	containing	the	nodal/atomic	position/energy/force/stress
information,	are	created	on-the-fly,	with	a	frequency	of		output_freq	.	A		model_cg.vtk		file,	a		model_atom.vtk	,	and	possibly	some
	group_cg_#.vtk		and		group_atom_#.vtk		files	(when	the	total	number	of	new	group,	restart	group	>	0)	are	also	created	in	the
beginning	of	the	simulation.	All	these		*.vtk		files,	with	the	legacy	formats	as	opposed	to	the	XML	formats,	can	be	read	and	analyzed
by	ParaView,	which	provides	a	variety	of	analyses.	In	most	cases,	a	CAC	simulation	cell	contains	both	the	atomistic	and	coarse-
grained	domain,	and	so	a	pair	of		cac_cg_#.vtk		and		cac_atom_#.vtk		files	(with	the	same	integer		#)	should	be	loaded	into
ParaView	at	the	same	time.

ParaView

107

https://www.visitusers.org/index.php?title=ASCII_VTK_Files
http://www.vtk.org/Wiki/VTK_XML_Formats
https://www.paraview.org

Data	analyzer

A	data	analyzer	is	provided	in	the		analyzer		directory.

vtk2dump

A	file		vtk2dump.f90		is	provided	in	the	directory		analyzer/vtk2dump		to	convert	at	most	two		*.vtk		files	to	a		dump.*		file.	To
compile	it,	simply

ifort	vtk2dump.f90	-o	vtk2dump

or

gfortran	vtk2dump.f90	-o	vtk2dump

To	run	the	code,	simply

./vtk2dump

The	executable	then	reads	at	most	three	files,	namely,		cac_cg_#.vtk	,		cac_atom_#.vtk	,	and		vtk2dump.in	.	From		cac_cg_#.vtk	,
the	atomic	positions	inside	the	elements	are	linearly	interpolated	from	the	nodes;	from		cac_atom_#.vtk	,	the	atomic	positions	are	read
as	is.	Then	both	interpolated	atoms	and	real	atoms	are	written	into	a		dump.#		file.	Here,		#	,	a	positive	integer,	is	provided	by	the
	step		in	the		vtk2dump.in		file,	whose	syntax	is

boolean_cg	boolean_at

step

x	boolean_user	lower_b	upper_b

y	boolean_user	lower_b	upper_b

z	boolean_user	lower_b	upper_b

	boolean_cg	,		boolean_at	,		boolean_user		=	t	or	f

	x	,		y	,		z		=	p	or	s

	lower_b	,		upper_b		=	real	number

For	example,

t	t

34

p	t	0.	100.

s	f

p	f	-50.	150.

	boolean_cg		and		boolean_at		decide	whether	the	files		cac_cg_#.vtk		and		cac_atom_#.vtk		are	involved	in	the	conversion,
respectively.	For	example,	if		boolean_cg		=	t	and		boolean_at		=	f,	only		cac_cg_#.vtk		is	converted.

In	the	example,		step		=	34,	meaning	that	files		cac_cg_34.vtk		and/or		cac_atom_34.vtk		should	be	prepared,	and	the	output	file	is
	dump.34	.

Data	analyzer

108

	x	,		y	,	and		z		set	the	boundary	conditions	along	the	x,	y,	and	z	directions,	respectively.

If		boolean_user		=	t,	it	should	be	followed	by		lower_b		and		upper_b	,	in	units	of	Angstrom,	which	provide	user-defined	lower	and
upper	bounds	of	the	simulation	cell	along	the	corresponding	direction.	If		boolean_user		=	f,		lower_b		and		upper_b	,	e.g.,		-50.	
and		150.		in	the	last	line	of	the	example,	become	irrelevant;	in	this	case,	the	two	bounds	along	a	certain	direction	are	calculated	using
the	nodal	and	atomic	positions	in	the	two		*.vtk		files.

Data	analyzer

109

Example	problems
The	PyCAC	distribution	includes	an	examples	sub-directory	with	some	sample	problems:

Stationary	dislocations
Dislocation	migration
Screw	dislocation	cross-slip
Dislocation	multiplication
Dislocation/obstacle	interactions
Dislocation/stacking	fault	interactions
Dislocation/coherent	twin	boundary	interactions

Example	problems

110

Stationary	dislocations

FCC	Al,	Mishin	EAM	potential,	2197	atoms	per	element	in	the	coarse-grained	domain.	Results	using	larger	models	and/or	in	other
metals	are	published	in	Xu	et	al.,	2015	and	Xu	et	al.,	2016.

In	the	figures	below,	the	atoms	that	fill	in	the	jagged	interstices	are	not	shown	for	a	better	visualization	of	the	elements;	the	nodes	are
colorred	by	the	in-plane	shear	stress.	Langevin	dynamic	simulation	at	10	K	is	carried	out,	with	periodic	energy	minimization	using	the
conjugate	gradient	method.

Edge	dislocation

The	figure	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	ParaView.

Screw	dislocation

The	figure	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	ParaView.

Stationary	dislocations

111

http://dx.doi.org/10.1103/PhysRevB.59.3393
http://dx.doi.org/10.1016/j.ijplas.2015.05.007
http://dx.doi.org/10.1016/j.jmps.2016.08.002

30 	mixed	type	dislocation

The	figure	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	ParaView.

∘

Stationary	dislocations

112

60 	mixed	type	dislocation

The	figure	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	ParaView,	similar	to	Fig.	8(c)	of	Xu	et	al.,	2015.

∘

Stationary	dislocations

113

http://dx.doi.org/10.1016/j.ijplas.2015.05.007

Stationary	dislocations

114

Dislocation	migration	across	the	atomistic/coarse-grained	domain
interface

FCC	Cu,	Mishin	EAM	potential,	2197	atoms	per	element	in	the	coarse-grained	domain.	Results	using	larger	models	are	published	in
Sec.	5.4	of	Xu	et	al.,	2015.

60 	mixed	type	dislocation	migration	from	the	atomistic	domain	to	the	coarse-grained
domain

In	the	figure	below,	an	indenter	(red	box)	is	displaced	continously	along	the	[0]	direction	to	nucleate	dislocations	from	the	free

surface	in	the	atomistic	domain.	Note	that	the	atoms	that	fill	in	the	jagged	interstices	are	not	shown	for	a	better	visualization	of	the
elements,	similar	to	Fig.	14(b)	of	Xu	et	al.,	2015.	The	dislocations	then	migrate	into	the	coarse-grained	domain.	Energy	minimization
using	the	conjugate	gradient	method	is	conducted	at	every	simulation	step.

The	movie	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	OVITO:

∘

1̄1̄

Dislocation	migration

115

http://dx.doi.org/10.1103/PhysRevB.63.224106
http://dx.doi.org/10.1016/j.ijplas.2015.05.007
http://dx.doi.org/10.1016/j.ijplas.2015.05.007

60 	mixed	type	dislocation	migration	from	the	coarse-grained	domain	to	the	atomistic
domain

In	the	figure	below,	an	indenter	(red	box)	is	displaced	continously	along	the	[0]	direction	to	nucleate	dislocations	from	the	free

surface	in	the	coarse-grained	domain.	Note	that	the	atoms	that	fill	in	the	jagged	interstices	are	not	shown	for	better	visualization	of	the
elements,	similar	to	Fig.	14(c)	of	Xu	et	al.,	2015.	The	dislocations	then	migrate	into	the	atomistic	domain.	Energy	minimization	using
the	conjugate	gradient	method	is	conducted	at	every	simulation	step.

00:00	/	00:00

∘

1̄1̄

Dislocation	migration

116

http://dx.doi.org/10.1016/j.ijplas.2015.05.007

The	movie	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	OVITO.

00:00	/	00:00

Dislocation	migration

117

Dislocation	migration

118

Screw	dislocation	cross-slip

FCC	Cu,	Mishin	EAM	potential,	1331	atoms	per	element	in	the	coarse-grained	domain.	Results	using	larger	models	are	published	in
Xu	et	al.,	2017.

In	the	figure	below,	the	atoms	that	fill	in	the	jagged	interstices	are	not	shown	for	a	better	visualization	of	the	elements.	In	the	Langevin

dynamic	simulation,	a	screw	dislocation	on	the	(1)	plane	is	first	created;	then	subject	to	a	γ 	simple	shear	strain,	it	crosses	slip	onto

the	(1).

The	movie	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	OVITO:

1̄ 1̄ zy

1̄1̄

Screw	dislocation	cross-slip

119

http://dx.doi.org/10.1103/PhysRevB.63.224106
http://dx.doi.org/10.1016/j.actamat.2016.10.005

00:00	/	00:00

Screw	dislocation	cross-slip

120

Dislocation	multiplication	from	a	Frank-Read	source

FCC	Al,	Mishin	EAM	potential,	2197	atoms	per	element	in	the	coarse-grained	domain.	Results	using	larger	models	are	published	in
Xu	et	al.,	2016	and	Xu	et	al.,	2016.

In	the	figure	below,	two	cylindrical	holes	are	carved	out	to	serve	as	the	Frank-Read	source.	The	atoms	and	elements	in	figure	(b)	are
colored	by	the	atomic	and	nodal	energy,	respectively,	and	are	sliced	on	the	xz	plane	to	highlight	the	holes.	In	the	hybrid	simulation,	an

edge	dislocation	is	first	created	between	the	two	holes;	then	subject	to	a	γ 	simple	shear	strain,	it	bows	out	and	form	a	dislocation

loop,	leaving	behind	another	edge	dislocation	segment	between	the	two	holes.

The	movie	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	OVITO:

zy

00:00	/	00:00

Dislocation	multiplication

121

http://dx.doi.org/10.1103/PhysRevB.59.3393
http://dx.doi.org/10.1016/j.scriptamat.2016.06.018
http://dx.doi.org/10.1016/j.jmps.2016.08.002

Dislocation	multiplication

122

Dislocation/obstacle	interactions

FCC	Ni,	Mishin	EAM	potential,	2197	atoms	per	element	in	the	coarse-grained	domain.	The	spherical	obstacle,	with	a	radius	of	about	1
nm,	is	either	a	void	or	a	precipitate.	Results	using	larger	models	were	presented	at	the	2017	MRS	Spring	Meeting.

Dislocation/void	interactions

In	the	figure	below,	the	atomistic	domain	is	sliced	on	the	xz	plane	for	a	better	visualization	of	the	void	(atoms	are	colored	by	the

atomic	energy	in	the	initial	configuration).	In	the	Langevin	dynamic	simulation,	an	edge	dislocation	on	the	(1)	plane	is	first	created;

then	subject	to	a	γ 	simple	shear	strain,	it	migrates	toward	the	void	and	bypasses	it	following	the	shearing	mechanism.

The	movie	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	OVITO:

1̄ 1̄

zy

Dislocation/obstacle	interactions

123

http://dx.doi.org/10.1103/PhysRevB.59.3393
https://mrsspring.zerista.com/event/member/363361

Dislocation/precipitate	interactions

In	the	figure	below,	the	atomistic	domain	is	sliced	on	the	xz	plane	for	a	better	visualization	of	the	precipitate	(atoms	colored	in	white).

In	the	Langevin	dynamic	simulation,	an	edge	dislocation	on	the	(1)	plane	is	first	created;	then	subject	to	a	γ 	simple	shear	strain,	it

migrates	toward	the	precipitate	and	bypasses	it	following	the	Orowan	looping	mechanism.

00:00	/	00:00

1̄ 1̄ zy

Dislocation/obstacle	interactions

124

The	movie	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	OVITO:

Note	that	the	screw	components	of	the	Orowan	loop	begin	to	cross	slip	at	about	24	s.	The	precipitate	is	not	shown	here.

00:00	/	00:00

Dislocation/obstacle	interactions

125

Dislocation/stacking	fault	interactions

FCC	Ag,	Williams	EAM	potential,	343	atoms	per	element	in	the	coarse-grained	domain.	Results	using	larger	models	are	published	in
Xu	et	al.,	2017.

In	the	figure	below,	the	atoms	that	fill	in	the	jagged	interstices	are	not	shown	for	a	better	visualization	of	the	elements.	In	the	Langevin

dynamic	simulation,	a	screw	dislocation	on	the	(1 1)	plane	and	an	intrinsic	stacking	fault	on	the	(11)	plane	are	first	created;	then

subject	to	a	γ 	simple	shear	strain,	the	dislocation	moves	toward	and	is	then	transmitted	across	the	stacking	fault	directly.

The	movie	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	OVITO:

1̄ 1̄

zx

Dislocation/stacking	fault	interactions

126

http://dx.doi.org/10.1088/0965-0393/14/5/002
http://dx.doi.org/10.3390/cryst7050120

00:00	/	00:00

Dislocation/stacking	fault	interactions

127

Dislocation/coherent	twin	boundary	interactions

FCC	Ni,	Mishin	EAM	potential,	2197	atoms	per	element	in	the	coarse-grained	domain.	Results	using	larger	models	and/or	in	other
metals	are	published	in	Xu	et	al.,	2016	and	Xu	et	al.,	2017.

In	the	figure	below,	the	atoms	that	fill	in	the	jagged	interstices	are	not	shown	for	a	better	visualization	of	the	elements.	In	the	Langevin

dynamic	simulation,	a	screw	dislocation	on	the	(1 1)	plane	is	first	created;	then	subject	to	a	γ 	simple	shear	strain,	the	dislocation

moves	toward	and	is	then	transmitted	across	the	Σ3{111}	coherent	twin	boundary.

The	movie	below	and	the	log	file	are	produced	using	the	input	file	and	rendered	by	OVITO:

1̄ zx

Dislocation/coherent	twin	boundary	interactions

128

http://dx.doi.org/10.1103/PhysRevB.59.3393
http://dx.doi.org/10.1038/npjcompumats.2015.16
http://dx.doi.org/10.1007/s11837-017-2302-1

00:00	/	00:00

Dislocation/coherent	twin	boundary	interactions

129

Miscellanies
This	chapter	provides	miscellaneous	information	that	is	important	but	does	not	fit	into	other	chapters.

Miscellanies

130

element	vs	node

In	the	group	command,		style_cg		can	be	either	element,	node,	or	null.

For	element,	if	the	centroid	of	an	element	is	inside	or	outside	(depending	on		boolean_in)		group_shape	,	this	element	and	all	its
nodes	belong	to	the	group.

For	node,	if	some	nodes	of	an	element	is	inside	or	outside	(depending	on		boolean_in)		group_shape	,	this	element	and	these	nodes
belong	to	the	group.

The	difference	between	element	and	node	is	explained	in	the	figure	below,	where	red	elements	(solid	lines)	and	nodes	(small	spheres)
belong	to	the	group	(large	sphere)	with		group_shape		=	sphere.

element	vs	node

131

lattice	periodicity	length

The	length	of	periodicity	of	the	lattice	is	the	minimum	distance	at	which	the	lattice	repeats	itself.	For	example,	the	lattice	constant	a 	in

cubic	crystal	systems	is	the	lattice	periodicity	length	along	the	 100 	directions.

Once	the	crystallographic	orientations	are	set,	e.g.,	the	x	axis	in	the	first	grain	has	an	orientation	of	[abc],	the	lattice	will	repeat	itself	at

every	 a 	distance	along	the	x	direction.	In	the	simple	cubic	system,	this	distance	is	likely	the	smallest	lattice	periodicity

length.	But	in	the	face-centered	cubic	(FCC)	and	body-centered	cubic	(BCC)	systems,	this	may	not	be	the	case.	For	example,	in	FCC,

when	[abc] = [112],	 a = a ,	yet	the	smallest	lattice	periodicity	length	l = (/2)a .	Another	example	is	in	BCC,

when	[abc] = [111],	 a = a ,	yet	l = (/2)a .

Since	each	grain	has	its	own	crystallographic	orientations,	each	grain	has	its	own	 .	The	length	vector	along	each	direction	that	is	the

largest	in	magnitude	among	all	grains	is	the	lattice	periodicity	length	for	the	simulation	cell,	 .	The	largest	component	in	the	 	vector

is	the	maximum	lattice	periodicity	length	for	the	simulation	cell,	l .

	and	l 	are	the	length	units	in	four	commands:	fix,	grain_dir,	group,	and	modify.	A	question	arises	regarding	how	the	lengths	in

these	four	commands	are	usually	determined.	For	example,	to	build	a	stationary	edge	dislocation,	one	needs	to	determine	the	position
of	the	dislocation,	i.e.,	using	the		modify_centroid_x	,		modify_centroid_y	,	and		modify_centroid_z		variables	in	the	modify
command.	In	the	input	file,	there	is	one	line

modify	modify_1	dislocation	1	3	13.	39.	17.333	90.	0.33

in	which		plane_axis		=	3	means	that	the	slip	plane	is	normal	to	the	z	direction.	As	a	result,	the		modify_centroid_z		decides	the	z-
coordinate	of	the	intersection	between	the	slip	plane	and	the	z	axis.	Since	there	is	only	one	dislocation,	one	usually	wants	to	let	the	slip
plane	be	within	the	mid-z	plane,	but	how	is	the	value	of		modify_centroid_z	,	which	equals	17.333	here,	determined?

In	the	log	file,	there	are	four	lines:

The	boundaries	of	grain	1	prior	to	modification	are	(Angstrom)

x	from		-0.413351394094665	to	128.552283563439630	length	is	128.965634957534292

y	from		-0.715945615951370	to	222.659086560878961	length	is	223.375032176830331

z	from	-29.228357377724798	to	213.951576004945480	length	is	243.179933382670271

where	the	last	number		243.179933382670271		is	the	edge	length	of	the	simulation	cell	along	the	z	direction,	prior	to	modification.	Note
that	it	is	important	to	use	the	edge	lengths	of	the	grain		prior	to	modification		instead	of	those	under		The	box	boundaries/lengths
are	(Angstrom)		because	the	former	are	used	to	build	dislocations	in	the	code.	Another	two	lines	in	the	log	file	are

The	lattice_space_max	are

x		4.960216729135929	y		2.863782463805506	z		7.014805770653949

where	the	last	number		7.014805770653949		is	the	maximum	lattice	periodicity	length	for	the	simulation	cell	along	the	z	direction,	

l ,	which	is	indeed	the	length	unit	of		modify_centroid_z	.	Thus,	if	one	wants	to	let	the	slip	plane	be	within	the	mid-z	plane,	the

value	of		modify_centroid_z		is

0

⟨ ⟩

√
a + b + c2 2 2

0

√
a + b + c2 2 2

0 √6 0 0 √6 0

√
a + b + c2 2 2

0 √3 0 0 √3 0

l0

l′0 l′0

max
′

l′0 max
′

max
′

lattice	periodicity	length

132

243.179933382670271	/	7.014805770653949	/	2	=	17.333

lattice	periodicity	length

133

processor	rank

In	MPI,	rank	is	a	logical	way	of	numbering	processors.	The	processor	1	has	rank	0,	the	processor	2	has	rank	1,	and	so	on.	In	the
PyCAC	code,	the	integer		root		is	set	to	0	in		processor_para_module.f90	.	The	processor	1,	i.e.,		root	,	does	heavy	lifting	in
reading,	writing,	and	collecting	data	from	other	processors.

processor	rank

134

shared	elements

One	issue	that	does	not	exist	in	parallel	atomistic	simulations	but	requires	special	attention	in	par-	allel	finite	element	implementations
is	that	in	the	latter	some	elements	may	be	shared	between	neighboring	processors.	In	CAC,	this	issue	originates	from	the	difference	in
shape	between	the	parallelepipedonal	processor	domain	and	the	rhombohedral	finite	elements	with	arbitrary	crystallographic
orientations,	the	latter	of	which	also	results	in	the	jagged	simulation	cell	boundaries.	Instead	of	having	all	relevant	processors	calculate
the	same	quantities	(e.g.,	force,	energy,	and	virial)	within	a	shared	element,	in	the	PyCAC	code,	each	relevant	processor	only	calculates
quantities	of	the	integration	points	its	domain	contains.	Then	these	quantities	are	summed	in	the		processor_equiv.f90		subroutine,
after	which	all	relevant	processors	have	the	same	nodal	quantities.	This	simple	summation	is	feasible	because	of	the	trilinear	shape
function	employed	in	the	finite	elements.

To	facilitate	the	shared	element-related	calculations,	a	public	array		tag_shared_ele		and	a	public	variable		ele_shared_num		are
introduced.	For	example,	processor	3	has	6	local	elements,	with	the	2nd,	4th,	and	5th	elements	shared	with	other	processors,	then

tag_ele_shared(1)	=	0

tag_ele_shared(2)	=	1

tag_ele_shared(3)	=	0

tag_ele_shared(4)	=	2

tag_ele_shared(5)	=	3

tag_ele_shared(6)	=	0

and

ele_shared_num	=	3

The	array	and	the	variable,	defined	in		processor_scatter_cg.f90		and	updated	in		update_neighbor_cg.f90	,	are	used	in	these	three
subroutines:		processor_edenshost_intpo.f90	,		processor_equiv.f90	,	and		processor_langevin_cg.f90	.

Note	that	in	current	PyCAC	code,	the	"shared	element	communication"	process	mentioned	above	does	NOT	involve	a	host	processor
as	described	in	page	123	of	Xu	et	al.,	which	was	for	a	previous	version.	The	host	processor,	which	has	the	highest	rank	among	all
processors	that	share	the	same	element,	is	indeed	used	in	the	code,	but	only	for	the	purposes	of	(i)	sending	the	element/node
information	to	the	root	processor	for	output,	e.g.,	in		all_to_one_cg.f90		and		all_to_one_group_cg.f90	,	and	(ii)	calculating	certain
variables	based	on	the	global	arrays,	e.g.,	the	global	force	norm		force_norm		calculated	in		conjugate_gradient.f90	,		fire.f90	,
	langevin_vel.f90	,		quenched_vel.f90	,		quick_mini.f90	,		steepest_descent.f90	,	and		update_vel.f90	.	For	example,	when
processor	2	and	processor	3	share	the	same	element	(and	thus	have	the	same	relevant	nodal	information),	only	one	of	them	needs	to
send	the	information	to	root.	The	host	processor	is	set	in	the		processor_scatter_cg.f90		subroutine,	in	which	the	array
	who_has_ele(ie)	=	.true.		for	the	host	processor	and		.false.		for	non-host	processors,	where		ie		is	the	local	element	id.

shared	elements

135

http://dx.doi.org/10.1016/j.ijplas.2015.05.007

EAM	potential

As	mentioned	earlier,	the	EAM	formulation	for	the	potential	energy	is

E = V (r) + F ()

where	V 	is	the	pair	potential,	F 	is	the	embedding	potential,	and	 	is	the	host	electron	density,	i.e.,

= ρ (r)

where	ρ 	is	the	local	electron	density	contributed	by	atom	j	at	site	i.

Let	r 	be	the	vector	from	atom	j	to	atom	i	with	norm	r (= r),	i.e.,

r = r − r

r =

where

r = r e + r e + r e

Now,	let's	prove	an	important	identity,

= e + e + e = − e − e − e = −

which	will	be	used	in	the	force	formulation	derivation	later.

The	force	on	atom	k	is

f = − = − −

The	first	term	in	the	force	formulation	is	non-zero	only	when	k	is	either	i	or	j,	thus	it	becomes

− + = − −

With	the	help	of	the	identity,	the	term	becomes

−

where	V 	and	V 	are	the	pair	potentials	for	the	atomic	pairs	kj	and	ik,	respectively,	while	V = V 	and	V = V .	Since	V 	is	atom

type-specific,	V 	and	V 	are	likely	not	the	same	unless	atom	i	and	j 	are	of	the	same	type.	Thus,	if	there	are	two	types	of	atoms	in	the

system,	there	will	be	three	V ,	between	type	1	and	type	1,	between	type	2	and	type	2,	and	between	type	1	and	type	2.

The	second	term	in	the	force	formulation	can	be	written	as

− = − = − = −

2
1∑i∑ j≠i

j ij ij ∑i ρ̄i

ρ̄

ρ̄i ∑
j≠i
j ij ij

ij

ji ji ij

ji i j

ji √
(r − r) + (r − r) + (r − r)i

x
j
x 2

i
y

j
y 2

i
z

j
z 2

j j
x x

j
y y

j
z z

∂rj
∂rji

∂rjx
∂rji x

∂rj
y

∂rji y
∂rjz
∂rji z

rji

rji
x

x
rji

rji
y

y
rji

rji
z

z
rji

rji

k ∂rk
∂E

2
1

∂rk

∂ V (r)∑i∑
j≠i
j ij ij

∂rk
∂ F ()∑i ρ̄i

2
1 [∂rk

∂ V (r)∑
j≠k
j kj kj

∂rk

∂ V (r)∑
k≠i
i ik ik] 2

1 [∂rkj

∂ V (r)∑
j≠k
j kj kj

∂rk
∂rkj

∂rik

∂ V (r)∑
k≠i
i ik ik

∂rk
∂rik]

2
1 [∂rkj

∂ V (r)∑
j≠k
j kj kj

rkj

rkj
∂rik

∂ V (r)∑
k≠i
i ik ik

rik
rik]

kj ik kj jk ik ki

kj ik

∑i ∂rk
∂F ()ρ̄i ∑i ∂ ρ̄i

∂F ()ρ̄i
∂rk
∂ ρ̄i ∑i ∂ ρ̄i

∂F ()ρ̄i ∑
j≠i
j ∂rk
∂ρ (r)ij ij ∑i ∂ ρ̄ i

∂F ()ρ̄i ∑
j≠i
j ∂rij
∂ρ (r)ij ij

∂rk
∂rij

EAM	potential

136

which	is	non-zero	when	k	is	either	i	or	j,	i.e.,	the	term	becomes

− −

Again,	with	the	help	of	the	identify,	the	term	becomes

−

Note	that	ρ 	is	the	local	electron	density	contributed	by	atom	j	at	site	k.	In	general,	ρ ≠ ρ .	This	is	different	from	the	pair	potential

V ,	for	which	generally	V = V .	Also,	generally	ρ ≠ ρ 	unless	atom	k	and	atom	i	are	of	the	same	type.

In	classical	EAM,	ρ = ρ 	even	when	atom	k	and	atom	i	are	of	different	type.	If	there	are	two	types	of	atoms	in	the	system,	there	are

only	two	ρ,	for	the	contribution	from	type	1	atom	and	for	that	from	type	2	atom,	regardless	of	which	type	of	atomic	site	it	contributes
to.	This	is	different	from	the	pair	potential	V ,	which	would	have	three	expressions	in	this	case.	Extensions	of	ρ	to	distinguish
contributions	at	different	types	of	atomic	sites	have	been	proposed,	e.g.,	in	the	Finnis-Sinclair	potential.

Adding	the	two	terms	in	the	force	formulation	together	yields

f = − + −

Since	i	and	j	are	just	dummy	indices,	it	is	safe	to	replace	all	i	with	j .	After	that,	with	r = −r ,	r = r ,	V = V ,	and	

ρ ≠ ρ ,	the	force	on	atom	k	becomes

f = + +

If	there	is	only	type	of	atoms	in	the	system,	ρ = ρ ,	and	the	force	formulation	is	simplified	to

f = + +

which	is	Equation	15	of	Xu	et	al.	Note	that	the	last	two	equations	hold	for	both	classical	EAM	and	Finnis-Sinclair	potentials,	because

the	relation	between	ρ 	and	ρ 	is	not	used	during	the	derivation.

∂ ρ̄k
∂F ()ρ̄ k ∑

j≠k
j ∂rkj

∂ρ (r)kj kj
∂rk
∂rkj ∑

i≠k
i ∂ ρ̄ i

∂F ()ρ̄i
∂rik

∂ρ (r)ik ik
∂rk
∂rik

∂ ρ̄ k

∂F ()ρ̄k ∑
j≠k
j ∂rkj
∂ρ (r)kj kj

rkj

rkj ∑
i≠k
i ∂ ρ̄i
∂F ()ρ̄i

∂rik
∂ρ (r)ik ik

rik
rik

kj kj jk

kj jk kj ij

kj ij

k 2
1 [∂rkj

∂ V (r)∑
j≠k
j kj kj

rkj

rkj
∂rik

∂ V (r)∑
k≠i
i ik ik

rik

rik] ∂ ρ̄ k

∂F ()ρ̄k ∑
j≠k
j ∂rkj
∂ρ (r)kj kj

rkj

rkj ∑
i≠k
i ∂ ρ̄i
∂F ()ρ̄i

∂rik
∂ρ (r)ik ik

rik

rik

jk kj jk kj jk kj

jk kj

k ∑
j≠k
j [∂rkj

∂V (r)kj kj
∂ ρ̄ k

∂F ()ρ̄k
∂rkj

∂ρ (r)kj kj
∂ ρ̄ j

∂F ()ρ̄ j
∂rkj

∂ρ (r)jk kj] rkj

rkj

jk kj

k ∑
j≠k
j [∂rkj

∂V (r)kj kj (∂ρ̄ k

∂F ()ρ̄ k
∂ ρ̄ j

∂F ()ρ̄j) ∂rkj
∂ρ (r)kj kj] rkj

rkj

kj ij

EAM	potential

137

http://dx.doi.org/10.1103/PhysRevB.29.6443
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1016/j.ijplas.2015.05.007
http://dx.doi.org/10.1103/PhysRevB.29.6443
http://dx.doi.org/10.1080/01418618408244210

Code	developer	guide
This	chapter	describes	some	algorithms	and	data	structures	of	the	PyCAC	code.	More	information	may	be	added	in	response	to
requests	from	developers	and	users.

Code	developer	guide

138

atom	and	atomap

atom

There	are	some	arrays	with		atom		in	their	names,	e.g.,		r_atom	,		vel_atom	,		force_atom	,	which	respectively	are	the	positions,
velocities,	and	forces	of	real	atoms	in	the	atomistic	domain.	On	the	other	hand,	defined	in		atom_para_module.f90	,	there	are
	atom_num_l	,	which	is	the	number	of	local	atoms	in	each	processor	domain,		atom_num_lg	,	which	is	the	number	of	local	AND	ghost
atoms	in	each	processor	domain,	and		atom_num_lr	,	which	is	the	actual	size	of	the	second	dimension	of	some		atom	-related	arrays.
The	differences	between		atom_num_l	,		atom_num_lg	,	and		atom_num_lr	,	as	well	as	their	relation	with	some		atom	-related	arrays	are
explained	below.

Say	that	the	system	contains	100	atoms	using	three	processors,	then	either		read_restart.f90		(if	one	restarts	a	previous	simulation)
or		model_assemble.f90		(if	one	builds	the	model	from	scratch),	set	by		boolean_restart	,	will	first	calculate		atom_num_l		as

atom_num_l	=	nint((real(atom_num,	wp)	/	pro_num)	*	1.2_wp)

In	our	case,		atom_num_l		=	40,	following	which	most		atom	-related	arrays	are	allocated.

Next,	in		processor_scatter_atomistic.f90	,	one	first	lets		atom_num_lr		equal		atom_num_l	,	then	the	root	processor	distributes	all
atoms	to	all	processors	(including	root	itself);	if	the	actual	number	of	local	atoms	one	processor	should	have	is	larger	than
	atom_num_lr	,		atom_num_lr		is	increased	by		seg_num		which	is	1024	as	set	in		module/cac_para_module.f90	.	In	the	meantime,
many		atom	-related	arrays	also	increase	their	size.	Assume	that	the	root	processor	should	contain	50	local	atoms	while	the	other	two
processors	25	each,		atom_num_lr		becomes	40	+	1024	=	1064	for	root	but	still	40	for	the	other	two	processors.	At	the	end	of	this
subroutine,	some		atom	-related	arrays,	e.g.,		r_atom	,	have	a	size	of	3	by	1064	for	root	while	3	by	40	for	the	other	two	processors;
	atom_num_l	,	which	is	expected	to	be	the	number	of	local	atoms	for	each	processor,	is	re-calculated	to	be	50	for	root	and	25	for	the
other	two	processors.

Next,	in		processor_ghost_atomistic.f90	,	the	ghost	atoms	are	added	to	the	end	of	some		atom	-related	arrays.	Again,	if	the	number
of	local+ghost	atoms	is	larger	than		atom_num_lr	,		atom_num_lr		is	further	increased	by		seg_num	,	along	with	the	expansion	in	size	of
some		atom	-related	arrays.	Assume	that	the	numbers	of	ghost	atoms	are	30,	10,	and	20	for	the	three	processors,	respectively,
	atom_num_lr		would	be	1064	for	root	(because	50	+	30	<	1064),	40	for	processor	1	(because	25	+	10	<	40),	and	1064	for	processor	2
(because	25	+	20	>	40).	In	other	words,		atom_num_lr		increases	for	the	last	processor	while	remaining	the	same	for	the	other	two
processors.	At	the	end	of	this	subroutine,		atom_num_lg		is	assigned	as	the	actual	number	of	local	+	ghost	atoms,	i.e.,	80,	35,	and	45	for
the	three	processors,	respectively.

In	sum,		atom_num_l		<=		atom_num_lg		<=		atom_num_lr	.	Note	that	(i)		atom_num		is	the	total	number	of	real	atoms	in	the	system,
i.e.,	100,	regardless	of	how	many	processors	are	involved	and	how	many	ghost	atoms	are	needed;	(ii)	in	the	case	of	single	processor,
there	may	still	be	ghost	atoms	if	periodic	boundary	conditions	are	used.

atomap

There	are	also	some	arrays	with		atomap		in	their	names,	e.g.,		r_atomap	,	which	is	the	positions	of	interpolated	atoms	in	the	coarse-
grained	domain.	On	the	other	hand,	defined	in		interpo_para_module.f90	,	there	are		atomap_num_l	,	which	is	the	number	of
interpolated	atoms	in	each	processor	domain,		atomap_num_lg	,	which	is	the	number	of	local	AND	ghost	interpolated	atoms	in	each
processor	domain,	and		atomap_num_lr	,	which	is	the	actual	size	of	the	second	dimension	of	some		atomap	-related	arrays.

atom	and	atomap

139

The	differences	between		atomap_num_l	,		atomap_num_lg	,	and		atomap_num_lr	,	as	well	as	their	relation	with	some		atomap	-related
arrays	are	similar	to	those	of		atom	-related	variables	and	arrays,	except	that	two	other	subroutines,		processor_scatter_cg.f90		and
	processor_ghost_cg.f90	,	are	involved.

Remark

In	PyCAC,	arrays	for	the	atomistic	domain,	e.g.,		atom	-related	arrays,	and	those	for	the	coarse-grained	domain,	e.g.,		atomap	-related,
	node	-related,	and		ele	-related	arrays,	are	completely	separated.	Take	the	position	vector	as	an	example,	a	processor	may
simultaneously	have	a		r_atom		array	and	a		r_atomap		array,	yet	it	only	has	a		r_atom		or	a		r_atomap		array	if	the	system	only
contains	real	or	interpolated	atoms,	i.e.,	fully	atomistic	or	fully	coarse-grained	models.	If	one	wants	to	add	an	additional	array	to	the
atomistic	domain,	e.g.,	to	distinguish	between	different	types	of	real	atoms,	one	almost	always	has	to	also	add	a	similar	array	to	the
coarse-grained	domain	to	distinguish	different	types	of	interpolated	atoms,	nodes,	and	elements.

atom	and	atomap

140

	Cover
	Introduction
	PyCAC features and non-features
	Compilation and execution
	Publications
	Acknowledgements and citations

	Background
	Atomistic field theory
	A brief history of CAC

	Algorithm
	Scheme
	Parallelization
	Arithmetic precision
	Units
	Input
	Output

	Graphical user interface
	Installation
	PyCAC project creation
	Existing project upload
	Results download
	Parametric study

	Command
	boundary
	box_dir
	cal
	constrain
	convert
	debug
	deform
	dump
	dynamics
	element
	fix
	grain_dir
	grain_mat
	grain_move
	grain_num
	group_num
	group
	lattice
	limit
	mass
	minimize
	modify_num
	modify
	neighbor
	potential
	refine
	restart
	run
	simulator
	subdomain
	temperature
	unit_num
	unit_type
	zigzag

	Post-processing
	OVITO
	ParaView
	Data analyzer

	Example problems
	Stationary dislocations
	Dislocation migration
	Screw dislocation cross-slip
	Dislocation multiplication
	Dislocation/obstacle interactions
	Dislocation/stacking fault interactions
	Dislocation/coherent twin boundary interactions

	Miscellanies
	element vs node
	lattice periodicity length
	processor rank
	shared elements
	EAM potential

	Code developer guide
	atom and atomap

